
 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 1/11

IVI Instrument Driver
Programming Guide

(Visual C++ Edition)
June 2012 Revision 2.0

1- Overview

1-1 Recommendation Of IVI-COM Driver

Microsoft Visual C++(native version) is a suitable environment for using IVI-COM instrument

drivers because it easily accesses COM components with Smart Pointer feature. Therefore
this guidebook recommends using IVI-COM instrument drivers through the smart pointer

feature.

Notes:

 This guidebook shows examples that use KikusuiPwx IVI instrument driver (KIKUSUI PWX series
DC Power Supply). You can also use IVI drivers for other vendors and other models in the same
manner.

 This guidebook describes how to create 32bit (x86) programs that run under Windows7 (x64),

using Visual Studio 2010 (C++).

1-2 IVI Instrument Class Interface

When using an IVI instrument driver, there are two approaches – using specific interfaces
and using class interfaces. The former is to use interfaces that are specific to an instrument

driver and you can utilize the most of features of the instrument. The later is to utilize
instrument class interfaces that are defined in the IVI specifications allowing to utilize

interchangeability features, but instrument specific features are restricted.

Notes:

 The instrument class to which the instrument driver belongs is documented in Readme.txt for
each of drivers. The Readme document can be viewed from Start buttonAll
ProgramsKikusuiKikusuiPwx menu.

 If the instrument driver does not belong to any instrument classes, you can't utilize class
interfaces. This means that you cannot develop applications that utilize interchangeability

features.

2- Example Using Specific Interface

Here we introduce an example using specific interfaces. By using specific interfaces, you can

utilize the maximum feature (or model specific functions) provided by the driver but you have

to spoil interchangeability.

2-1 Creating Application Project

To simplify explanation, this guidebook shows you an example of the simplest console
application. After launching Visual Studio IDE, choose File | New | Project menu to bring

up the New Project dialogue. Select Win32 under Visual C++ language from Installed

Templates, then select Win32 Console Application. Also specify a project name
(guideAppCpp in this example) then click OK. A new application project will be then created.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 2/11

Figure 2-1 New Project Dialogue

2-2 Importing Type Libraries

What you should do first after creating a new project is, import type libraries for the IVI-COM

instrument driver that you want to use. Open the stdafx.h file in your project, add the
following #import lines after the existing #include lines.

#import "GlobMgr.dll" no_namespace named_guids
#import "IviDriverTypeLib.dll" no_namespace named_guids
#import "kipwx.dll" no_namespace named_guids

Notes:

 In the above description, we did not specify full-path to the DLL file names. But when compiler
cannot find these files, you need explicitly specify full-path in the #import lines or, configure the

directory conditions in Visual C++ environment settings so that the DLL can be implicitly imported.

 GlobMgr.dll (VISA Global Resource Manager DLL) is found in "C:/Program Files (x86)/IVI
Foundation/VISA/VisaCom" directory.

 IVI driver DLLs are found in "C:/Program Files (x86)/IVI Foundation/IVI/Bin" directory.

2-3 Initializing COM Library

First, add CoInitializeEx and CoUninitialize calls in the _tmain function.

int _tmain(int argc, _TCHAR* argv[])
{
 HRESULT hr = CoInitializeEx(NULL, COINIT_APARTMENTTHREADED);

 // In this area, write codes that utilize COM

 CoUninitialize();
 return 0;

}

It is neccesary to call these functions from each thread that uses the COM library. Between
COM functions are available between CoInitializeEx and CoUninitialize calls.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 3/11

2-4 Creating Object and Initializing Session

Between CoInitializeEx and CoUninitialize calls, you write the following code

fragments that opens a session for instrument driver object and close it. Here assume that
an instrument (Kikusui PWX series DC supply) having IP address 192.168.1.5 connected with

LAN interface.

try {
 IKikusuiPwxPtr spInstr;

 hr = spInstr.CreateInstance(CLSID_KikusuiPwx);

 spInstr->Initialize(
 L"TCPIP::192.168.1.5::INSTR",
 VARIANT_TRUE,
 VARIANT_TRUE,
 L"QueryInstrStatys=1");

 spInstr->Close();
}
catch(...) {
}

When creating a driver object, use CreateInstance method of Smart Pointer feature.

Then you need pass CLSID_KikusuiPwx as a component GUID.

Every Visual C++ smart pointer has a type name that begins with interface type name
(which begins with uppercase I) and ends with Ptr. (For the case of IKikusuiPwx interface,

it is IKikusuiPwxPtr type.) When calling methods that manage itself such as component

initialization, use the dot operator (.). Once the smart pointer is initialized, accesses to
properies and methods of the COM interface use the pointer operator (->).

Just creating the object does not communicate with instrument, so furthermore invoke
Initialize method and Close method.

Once the object is created with CreateInstance, its reference count is 1 at the point of

time. When the scope of the variable instr has been lost (at the end of try block), the

reference count is decremented. The object will be destroyed when the reference count

becomes 0.

Notes:

 In the above example, mind that the CoUninitialize is invoked after the COM object gets

destroyed. When using a smart pointer, you don't normally write object destruction code. Instead,
it leaves to implicit destruction when the variable scope gets lost. In the above example, the code
is written as the variable scope gets lost within the try block. If you wrote CoUninitialize
call immediately after the Close call in the try block, the object destruction would postpone
after CoUninitialize call causing the program to crash.

 In MFC-based projects, if the project is declared to use OLE or ActiveX,
CoInitializeEx/CoUninitialize calls are already embedded in other parts allowing to omit

explit calls.

Now let's talk about the parameters for the Initialize method. Every IVI-COM

instrument driver has an Initialize method that is defined in the IVI specifications. This

method has the following parameters.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 4/11

Table 2-1 Params of Initialize Method

Parameter Type Description

ResourceName _bstr_t VISA resource name string. This is decided according to
the I/O interface and/or address through which the
instrument is connected. For example, a LAN-based
instrument having IP address 192.168.1.5 will be
TCPIP::192.168.1.5::INSTR (when VXI-11case).

IdQuery VARIANT_BOOL Specifying TRUE performs ID query to the instrument.

Reset VARIANT_BOOL Specifying TRUE resets the instrument settings.

OptionString _bstr_t Overrides the following settings instead of default:

RangeCheck
Cache
Simulate
QueryInstrStatus
RecordCoercions
Interchange Check

Furthermore you can specify driver-specific options if
the driver supports DriverSetup features.

ResourceName specifies a VISA resource. If IdQuery is TRUE, the driver queries the
instrument identities using a query command such as "*IDN?". If Reset is TRUE, the

driver resets the instrument settings using a reset command such as "*RST".

OptionString has two features. One is what configures IVI-defined behaviours such as

RangeCheck, Cache, Simulate, QueryInstrStatus, RecordCoercions, and

Interchange Check. Another one is what specifies DriverSetup that may be

differently defined by each of instrument drivers. Because the OptionString is a string

parameter, these settings must be written as like the following example:

QueryInstrStatus = TRUE , Cache = TRUE , DriverSetup=12345

(DriverSetup=12345 is only an imaginary parameter for explanation.)

Names and setting values for the features being set are case-insensitive. Since the setting
values are Boolean type, you can use any of TRUE, FALSE, 1, and 0. Use commas for

splitting multiple items. If an item is not explicitly specified in the OptionString
parameter, the IVI-defined default value is applied for the item. The IVI-defined default
values are TRUE for RangeCheck and Cache, and FALSE for others.

Some instrument drivers may have special meanings for the DriverSetup parameter. It

can specify items that are not defined by the IVI specifications when invoking the
Initialize method, and its purpose and syntax are driver-specific. Therefore, specifying

the DriverSetup must be at the last part on the OptionString parameter. Because the

contents of DriverSetup are different depending on each driver, refer to driver's Readme

document or online help.

2-5 Closing Session

To close instrument driver session, use the Close method.

2-6 Execution

You can execute the previous codes for the time being.

// guideAppCpp.cpp : Defines the entry point for the console application.
//

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 5/11

#include "stdafx.h"

int _tmain(int argc, _TCHAR* argv[])
{
 HRESULT hr = CoInitializeEx(NULL, COINIT_MULTITHREADED);

 try {
 IKikusuiPwxPtr spInstr;

 hr = spInstr.CreateInstance(CLSID_KikusuiPwx);

 spInstr->Initialize(
 L"TCPIP::192.168.1.5::INSTR",
 VARIANT_TRUE,
 VARIANT_TRUE,
 L"QueryInstrStatys=1");

 spInstr->Close();
 }
 catch(...) {
 }

 CoUninitialize();

 return 0;
}

In this example codes, content of the _tmain function is executed linearly. If the instrument

is actually connected and the Initialize method call has succeeded, the program will

finish silently. However, if a communication problem has occurred or the VISA library is not
configured properly, a COM exception (_com_error) will be generated. .

How to handle errors (exception) is explained later.

Figure 2-2 COM Exception

2-7 Repeated Capabilities, Output Collection

In case of IVI drivers for such as power supply or oscilloscope, the driver is designed

assuming the instrument has multiple channels. Therefore for properties and methods that

access instrument settings , there are a lot of cases that Repeated Capabilities (or Collection)
are implemented. As for instrument drivers of DC power supplies, it is the Output collection.

For the case of KikusuiPwx IVI-COM driver, its concept is in KikusuiPwxOutputs and

KikusuiPwxOutput. The plural name is the collection and singular name is each item (1 or

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 6/11

more items) which may exist in the collection. In general an IVI instrument driver for DC

power supply is designed assuming the instrument is a multi-track model.

They have the same name except for differences plural and singular forms. Like this, a

component that has a plural name is generally called as Repeated Capabilities in the IVI spec.
(Also called as Collection in COM terminology). The COM interface having plural name such
as IKikusuiPwxOutputs normally has Count, Name, and Item properties (all read-only).

Count property returns number of objects, Name property returns the name of the indexed

object, and Item property returns reference to the object specified by a name. .

The following code example controls the output channel that is identified by "Output0" for

the Kikusui PWX series DC supply.

...
IKikusuiPwxOutputPtr spOutput = spInstr->Outputs->Item[L"Output0"];
spOutput->VoltageLevel = 20.0;
spOutput->CurrentLimit = 2.0;

spOutput->Enabled = VARIANT_TRUE;...

Once the IKikusuiPwxOutput interface has been acquired, there is no difficulty at all.

The VoltageLevel and the CurrentLimit properties set voltage level and current limit

settings respectively. The Enabled property switches output ON/OFF state.

Mind the grammar for acquiring the IKikusuiPwxOutput interface. This example here

acquires the IKikusuiPwxOutputs interface though the Output property of the

IKikusuiPwx interface, then acquires IKikusuiPwxOutput interface by using the Item

property.

Now mind the parameter passed to the Item property. This parameter specifies the name

of the single Output object to be referenced. Actual available names (Output Name) are

however different depending on drivers. For example, KikusuiPwx IVI-COM driver uses an
expression like "Output0". However other drivers, even if being IviDCPwr class-compliant,

may have different names. One instrument driver, for example, may use an expression like
"Channel1". Although available names on a particular instrument driver are normally

documented in the driver's online help, you can also check them out by writing some test

codes shown below.

 IKikusuiPwxOutputsPtr spOutputs = spInstr->Outputs;
 int n;
 int c = spOutputs->Count;

 for(n=1; n<=c; n++) {
 _bstr_t name;
 name = spOutputs->Name[n];
 OutputDebugString(name);
 }

The Count property returns number of single objects that the repeated capabilities have.
The Name property returns the name of single object for the given index. The name is

exactly the one that can be passed to the Item property as a parameter. In the above

example, the codes iterate from the index 1 to Count by using the for block. Mind that the

index numbers for the Name parameter is one-based, not zero-based.

3- Error Handling

In the previous examples, there was no error handling processed. However, setting an out-

of-range value to a property or invoking an unsupported function may generate an error

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 7/11

from the instrument driver. Furthermore, no matter how the application is designed and

implemented robustly, it is impossible to avoid instrument I/O communication errors.

When using IVI-COM instrument drivers, every error generated in the instrument driver is

transmitted to the client program as a COM exception. In case of C++, a COM exception can
be handled by using try, catch, blocks.

Now let's change the example of setting voltage and current as follows.

 try {
 HRESULT hr;
 IKikusuiPwxPtr spInstr;

 hr = spInstr.CreateInstance(CLSID_KikusuiPwx);

 spInstr->Initialize(
 L"TCPIP::192.168.1.5::INSTR",
 VARIANT_TRUE,
 VARIANT_TRUE,
 L"");

 IKikusuiPwxOutputPtr spOutput = spInstr->Outputs->Item["Output0"];
 spOutput->VoltageLevel = 20.0;
 spOutput->CurrentLimit = 2.0;
 spOutput->Enabled = true;

 spInstr->Close();
 }
 catch(_com_error e) {
 WCHAR msg[256];
 wsprintf(msg, L"%s, 0x%08x", (LPCWSTR)e.Description(), e.Error());
 OutputDebugString(msg);
 }

 catch(...) {

 }

In this example, codes that may generates exceptions are written in the try block. For

example, if the name passed to the Item property is wrong, if an out-of-range value is

passed to VoltageLevel, or if an instrument communication error is generated, a COM

exception will be generated in the instrument driver. Any exceptions generated inside the
try block are handled in a catch block if corresponding block exists. (If no corresponding
Catch block is fond, the process will be handled as an Unhandled Exception and the

program will crash.) Above example just displays a simple message in the console when an

exception has occurred.

4- Example Using Class Interface

Now we explain how to use class interfaces. By using class interfaces, you can swap the
instruments without recompiling/relinking your application codes. In this case, however, IVI-

COM instrument drivers for both pre-swap and post-swap models must be provided, and
these drivers both must belong to the same instrument class. There is no interchangeability

available between different instrument classes.

4-1 Virtual Instrument

What you have to do before creating an application that utilizes interchangeability features is

create a virtual instrument. To realise interchangeability features, you should not write

codes that are very specific to a particular IVI-COM instrument driver (e.g. creating an object

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 8/11

instance directly as KikusuiPwx type) and should not write a specific VISA resource name

such as "TCPIP::192.168.1.5::INSTR". Writing them directly in the application spoils
interchangeability.

Instead, the IVI-COM specifications define methods to realise interchangeability by placing an
external IVI configuration store. The application indirectly selects an instrument driver

according to contents of the IVI Configuration Store, and accesses the indirectly loaded
driver through the class interfaces.

The IVI Configuration Store is normally C:/ProgramData/IVI Foundation/IVI

/IviConfigurationStore.XML file and is accessed through the IVI Configuration Server DLL.
This DLL is mainly used by IVI instrument drivers and some VISA/IVI configuration tools, not

by end-user applications. Instead, you can edit IVI driver configuration by using NI-MAX (NI
Measurement and Automation Explorer) bundled with NI-VISA or IVI Configuration Utility

bundled with KI-VISA.

Notes:

 As for how to edit virtual instrument settings using NI-MAX, refer to "IVI Instrument Driver
Programming Guide (LabVIEW Edition or LabWindows/CVI Edition)".

This guidebook assumes that a virtual instrument having the logical name mySupply is

already created, using KikusuiPwx driver, and using a VISA resource "

TCPIP::192.168.1.5::INSTR ".

4-2 Importing Type Libraries

Similarly to the example using specific interfaces, create a new project of Win32 Console

Application as C++ language.

What you should do first after creating a new project is, import type libraries for the IVI-COM

instrument driver that you want to use. Open the stdafx.h file in your project, add the
following #import lines after the existing #include lines.

#import "GlobMgr.dll" no_namespace named_guids
#import "IviDriverTypeLib.dll" no_namespace named_guids
#import "IviDCPwrTypeLib.dll" no_namespace named_guids

#import "IviSessionFactory.dll" no_namespace named_guids

Notes:

 In the above description, we did not specify full-path to the DLL file names. But when compiler
cannot find these files, you need explicitly specify full-path in the #import lines or, configure the
directory conditions in Visual C++ environment settings so that the DLL can be implicitly imported.

 GlobMgr.dll (VISA Global Resource Manager DLL) is found in "C:/Program Files (x86)/IVI
Foundation/VISA/VisaCom" directory.

 IVI driver DLLs are found in "C:/Program Files (x86)/IVI Foundation/IVI/Bin" directory.

Once reference setting is completed, write the following code fragments. (Here write

everything at once including the exception handlers mentioned before.)

int _tmain(int argc, _TCHAR* argv[])
{
 HRESULT hr = CoInitializeEx(NULL, COINIT_APARTMENTTHREADED);

 try {
 HRESULT hr;

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 9/11

 IIviDCPwrPtr spInstr;
 IIviSessionFactoryPtr spSf;

 hr = spSf.CreateInstance(CLSID_IviSessionFactory);
 spInstr = spSf->CreateDriver(L"mySupply");

 spInstr->Initialize(L"mySupply", VARIANT_TRUE, VARIANT_TRUE, L"");

 IIviDCPwrOutputPtr spOutput = spInstr->Outputs->Item[L"Track_A"];
 spOutput->VoltageLevel = 20.0;
 spOutput->CurrentLimit = 2.0;
 spOutput->Enabled = true;

 spInstr->Close();
 }
 catch(_com_error e) {
 WCHAR msg[256];
 wsprintf(msg, L"%s, 0x%04x", (LPCWSTR)e.Description(), e.Error());
 OutputDebugString(msg);
 }

 catch(...) {
 }

 CoUninitialize();

 return 0;
}

Let's explain from the beginning.

4-3 Creating Object and Initializing Session

In contrast using specific interfaces, any dependency to specific components such as
KikusuiPwx cannot be written. Instead, it creates an instance of SessionFactory object,

and indirectly create a driver object that is configured in the IVI Configuration Store by using
CreateDriver method.

Now create an IviSessionFactory object, then obtain the reference (smart pointer) to

IIviSessionFactory interface.

 IIviSessionFactoryPtr spSf;
 hr = spSf.CreateInstance(CLSID_IviSessionFactory);

Next, invoke the CreateDriver method passing the IVI Logical Name (Virtual Instrument).

The created object is actually an instance of KikusuiPwx driver, but here store the reference
to IIviDCPwr interface into the variable spInstr.

 IIviDCPwrPtr spInstr = spSf->CreateDriver(L"mySupply");

If IVI Configuration Store is properly configured, the code will execute without generating

exceptions. However, at this point of time, it has not communicate with the instrument yet.

The DLL of IVI -COM driver is just loaded.

Then invoke Initialize method. At this point of time, communications with the

instrument begins. The 1st parameter to Initialize method was originally a VISA address

(VISA IO resource) but, here it shall be the IVI Logical Name. The IVI Configuration Store

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 10/11

already knows the linked info concerning to this Logical Name, such as Hardware Asset,

therefore the VISA address specified there will be actually applied.

spInstr->Initialize(L"mySupply", VARIANT_TRUE, VARIANT_TRUE, L"");

As for IviDCPwr class, the Output object of DC power supply is found in the Outputs

collection. Similarly to the example of using specific interface, it obtains the reference to the
single Output object from the collection. In this case, the interface type is

IIviDCPwrOutput instead of IKikusuiPwxOutput.

 IIviDCPwrOutputPtr spOutput = spInstr->Outputs->Item[L"Track_A"];
 spOutput->VoltageLevel = 20.0;
 spOutput->CurrentLimit = 2.0;

 spOutput->Enabled = true;

Mind the parameter that is passed to Item parameter. This parameter specifies the name of

single Output object that you want to reference to. In the example using specific interfaces

it passed Physical Name that may be different by driver implementation basis, but not here.

This example cannot use such Physical Names very specific to an instrument driver
implementation (in fact it is possible to use but shall not to avoid spoiling interchangeability),

so we use a Virtual Name.

The virtual name "Track_A" that is used in the above example is what specified to map to

the physical name "Output0" in the IVI Configuration Store.

4-4 Exchanging Instrument

Example shown so far were set to use kipwx instrument driver as the virtual instrument
configuration. Now what happens if changing the instrument to the one that is hosted by

AgN57xx driver (Agilent N5700 series DC Power Supply)? In this case, you don't have to

recompile/relink your application, however you have to change the configuration for IVI
Logical Name (virtual instrument). Basically the configuration shall change:

 Software Module in Driver Session tab (kipwxAgN57xx)

 map target of Virtual Names (Output0Output1)

 IO Resource Descriptor in Hardware Asset (changing to the VISAaddress of post-swap
instrument)

 Once the configuration is properly set, the above example will function with the post-
swap instrument without having to recompile.

Once the configuration is properly set, the above example will function with the post-swap

instrument without having to recompile.

Notes:

 For how to configure virtual instruments, refer to "IVI Instrument Driver Programming Guide
(LabVIEW Edition or LabWindows/CVI Edition)".

 The interchangeablity feature utilizing IVI class drivers does not guarantee the correct operation
between pre-swapping and post-swapping instruments. Please make sure to confirm that your

system correctly functions after swapping the instruments.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 11/11

IVI Instrument Driver Programming Guide
Product names and company names that appear in this guidebook are trademarks or registered
trademarks of their respective companies.
©2012 Kikusui Electronics Corp. All Rights Reserved.

