KIKUSUI ELECTRONICS Corp. Test & Measurement Instruments

IVI Instrument Driver Programming Guide

], -\ IVI Instrument Driver
| (_,Em = Programming Guide
(Excel 2007 VBA Edition)

July 2012 Revision 2.0

1- Overview

1-1 Recommendation Of IVI-COM Driver

Excel VBA is one of the most suitable development environments for use with IVI-COM
instrument drivers. Since COM programming style such as using ActiveX controls is very
popular in VBA, many programmers are familiar with using them. Although an IVI-COM
instrument driver is not an ActiveX control, you can develop your programs in the same
manner that when you use generic COM objects.

Notes:

® This guidebook shows examples that use KikusuiPwx IVI instrument driver (KIKUSUI PWX series
DC Power Supply). You can also use IVI drivers for other vendors and other models in the same
manner.

® This guidebook describes how to create 32bit (x86) programs that run under Windows7 (x64),
using Excel 2007 VBA.

1-2 IVI Instrument Class Interface

When using an IVI instrument driver, there are two approaches — using specific interfaces
and using class interfaces. The former is to use interfaces that are specific to an instrument
driver and you can utilize the most of features of the instrument. The later is to utilize
instrument class interfaces that are defined in the IVI specifications allowing to utilize
interchangeability features, but instrument specific features are restricted.

Notes:

® The instrument class to which the instrument driver belongs is documented in Readme.txt for
each of drivers. The Readme document can be viewed from Start button=»All
Programs=>» Kikusui=»KikusuiPwx menu.

® If the instrument driver does not belong to any instrument classes, you can't utilize class
interfaces. This means that you cannot develop applications that utilize interchangeability
features.

2- Example Using Specific Interfaces

Here we introduce an example using specific interfaces. By using specific interfaces, you can
utilize the maximum feature (or model specific functions) provided by the driver but you have
to spoil interchangeability.

2-1 Preparation For Using VBA

This document shows example apps where a button control is directly placed on an Excel
sheet.

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 1/11

KIKUSUI ELECTRONICS Corp. Test & Measurement Instruments

IVI Instrument Driver Programming Guide

The default state of Excel installation does not allow you to use VBA, so you need customize
Excel settings. After launching Excel, select Excel Options from the Microsoft Office
button (a circle button at the left end of the Ribbon).

|'fm=.‘
a

Figure 2-1 Microsoft Office Button

Select Popular in the category pane, then select the Show Developer tab in the Ribbon
checkbox. Now Developer tab will be shown in the Ribbon menu.

rEx‘:el AT m‘

o |
e

o
B g Excel DEREWIA T a2 R LE T,

TrERE Excel OEFERACEET DI+ T3z,

{875 FERBFIRC V=)L S —RRTEDM G
I : TAEREEF TR O
SEHEERTE e i

2-H-HE (e
PhA Ho7 EOARAMRY | M7 e HCHROHIRERTID |+
BT - LA RIBERT - PANRETRATIUANE LS [1Y -REUAORED. |
A HLOT I OTERRFY
BB T4 N FIOTH b [=]
TAUk HA R 1 [=]
WL - OEEOEI () ERE - [~]
Fyh0 - S e

Microzoft Office 031 —W—SHE

34—l
Microsoft Office TIEFATZEETERTS

(oK] ezl]

%

Figure 2-2 Excel Options
Continuously, select Developer tab from the Ribbon menu.

Hi—ta @A A= AP £zt T4 LiE] FT Pz TRA Team

ﬁ = EznoEiH |;§_-1 $ [BIniTs E GO 0NTe B4 A=
o El ?—Q;D [i ER TR Eﬁi “ﬁ»r GHa-koFET - SR EpTAAA-
Izua T - =
Biasic A ThomiEE Ty - E-F # 4{PoHOET BT —AOEH
a-k TkO—Jk HML
| Al - £ |
A B & o E F G H I J
1

Figure 2-3 Developer Menu

Select Macro Security from Code section on the Ribbon to bring up the Trust Center
dialogue, then select Enable all macros (not recommended; potentially dangerous
code can run) from Macro Settings.

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 2/11

KIKUSUI ELECTRONICS Corp. Test & Measurement Instruments

IVI Instrument Driver Programming Guide

[exauzs oo - (.2 [

(AT EBRT T

fErRCER A e AL

PRAY) BEEETHACIATOTI R T EL)
T -; St TIATOTIIEEHITED)

fctiveX (EATE | FUALBEENETIDRRRE. SATOTIOEEIEEE)

e — © HRT Ty R R N AT

Sotr— Ji- EISEE O I0RE

SERTL T [VBA FOV0k AFT1hl X LAOPHEARISHET N

I I — AP

OK] Fatil J

Figure 2-4 Trust Centre

After completing macro securities, continuously select Insert | Form Control | Button
(Form Control) from Control section on the Ribbon, then click a region where you want to
put a new button control. Then Assign Macro dialogue will be shown and select New to
create a new macro.

(<roo=s =)
OO M
SRR VERGIN
1
THOMIFFARA): | BAOTOBIATOT D [~]
ERER
ok | [& |

Figure 2-5 Assign Macro

After creating a macro the Visual Basic editor will open, then you will see the source code for
the button handler. Hereafter you write programs in this button hander.

3- Example Using Specific Interfaces

Here we introduce an example using specific interfaces. By using specific interfaces, you can
utilize the maximum feature (or model specific functions) provided by the driver but you have
to spoil interchangeability.

3-1 Importing Type Libraries

What you should do first after creating a new project is import the type libraries of IVI-COM
instrument drivers you want to use. Choose Tools | References menu to bring up the

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 3/11

KIKUSUI ELECTRONICS Corp. Test & Measurement Instruments

IVI Instrument Driver Programming Guide

References dialogue. Since this example assumes that you use KikusuiPwx IVI-COM driver,
you need select IVI KikusuiPwx 1.0 Type Library and IviDriver 1.0 Type Library.

-

ST - VBAProject

E0ETRER S T3 Fr-1 LAY “
VT AeilentMbfxx 1.0 Type Library

Ivi Configuration Server 16 Tvpe Library (xf4) i A
IvT Kikusuid800 (Kikusuid 200 Type Library
| T KikusuiPwe: 10 Twpe Library

: - I EH3(B) ..
FeiGPwr 1.0 Twpe Library (xfid) (i + Bl

FviCounter 100 Type Library (x64)

iDCPywr 20 Twpe Library (xfd) i Q
IviDigitizer 1.0 Tvpe Libra(ry (:;ﬁ-t) R AV HH)
IviDmm 3.0 Type Library (xfd

FviDownconverter 10 Type Librar [xfid) +

Pl iCriver 1.0 Twpe Library Cxfd)
IviEventaerverDLL 1.0 Tvpe Library
IviFeen 3.0 Tvpe Library &E-ﬁ
Tuil wiSuere 10 Twrne |ikrare feRdh

1 | 1] | 3

-

LviDriver 1.0 Type Library (x64)

15FR: C¥Proeram Files (x86)%Iv] Foundation¥IVEEEin¥IviDriver Typelibdll
=5 B

b

Figure 3-1 Importing Type Libraries
3-2 Creating Object and Initializing Session

You write codes in the button handler previously created. Write the following code fragments
that opens a session for instrument driver object and close it. Here assume that an

instrument (Kikusui PWX series DC supply) having IP address 192.168.1.5 connected with
LAN interface.

Dim inst As IKikusuiPwx
Set inst = New KikusuiPwx

inst.Initialize

"TCPIP::192.168.1.5::INSTR", True, True, "QueryInstrStatus=1"
inst.Close

Now let's talk about the parameters for the Initialize method. Every IVI-COM

instrument driver has an Initialize method that is defined in the IVI specifications. This
method has the following parameters.

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 4/11

KIKUSUI ELECTRONICS Corp. Test & Measurement Instruments

IVI Instrument Driver Programming Guide

Table 3-1 Parameters for Initialize method
Parameter Type Description
ResourceName string VISA resource name string. This is decided according to

the I/0O interface and/or address through which the
instrument is connected. For example, a LAN-based
instrument having IP address 192.168.1.5 will be
TCPIP::192.168.1.5::INSTR (when VXI-11case)

IdqQuery Boolean Specifying TRUE performs ID query to the instrument.

Reset BooTlean Specifying TRUE resets the instrument settings.

Optionstring string Overrides the following settings instead of default:

RangeCheck

Cache

Simulate
QueryInstrstatus
RecordCoercions
Interchange Check

Furthermore you can specify driver-specific options if
the driver supports Driversetup features.

ResourceName specifies a VISA resource. If IdQuery is TRUE, the driver queries the
instrument identities using a query command such as "*IDN?". If Reset is TRUE, the
driver resets the instrument settings using a reset command such as "*RST".

Optionstring has two features. One is what configures IVI-defined behaviours such as
RangecCheck, Cache, Simulate, QueryInstrstatus, RecordCoercions, and
Interchange Check. Another one is what specifies DriversSetup that may be
differently defined by each of instrument drivers. Because the OptionString is a string
parameter, these settings must be written as like the following example:

QueryInstrStatus = TRUE , Cache = TRUE , DriverSetup=12345

(DriverSetup=12345 is only an imaginary parameter for explanation.)

Names and setting values for the features being set are case-insensitive. Since the setting
values are Boolean type, you can use any of TRUE, FALSE, 1, and 0. Use commas for
splitting multiple items. If an item is not explicitly specified in the OptionString
parameter, the IVI-defined default value is applied for the item. The IVI-defined default
values are TRUE for RangeCheck and Cache, and FALSE for others.

Some instrument drivers may have special meanings for the DriverSetup parameter. It
can specify items that are not defined by the IVI specifications when invoking the
Initialize method, and its purpose and syntax are driver-specific. Therefore, specifying
the Driversetup must be at the last part on the OptionString parameter. Because the
contents of DriversSetup are different depending on each driver, refer to driver's Readme
document or online help.

3-3 Closing Session
To close the instrument driver session, use the C1ose method.
3-4 Execution

You can execute the previous codes for the time being. By clicking the button placed on the
worksheet (or by pressing F5 when the Visual Basic editor is active), the VBA macro will
operate. The codes written in the button handler are executed, and the program will
complete silently if the Initialize method call is succeeded. If a communication problem

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 5/11

KIKUSUI ELECTRONICS Corp. Test & Measurement Instruments

IVI Instrument Driver Programming Guide

has occurred or the VISA library is not configured properly, a COM exception (VBA runtime
error) will be generated.

We describe how to handle error (exceptions) later.

r© -
Microsoft Visual Basic

EFTIFT S — -2147204588 (BO044214)"

KikusuiPwe: IO error: HRESULT = 80040011,
Failed to open VIS4 resource.

| wTEe | [CEmien] o |

e

Figure 3-2 COM Exception

3-5 Repeated Capabilities, Output Collection

In case of IVI drivers for such as power supply or oscilloscope, the driver is designed
assuming the instrument has multiple channels. Therefore for properties and methods that
access instrument settings , there are a lot of cases that Repeated Capabilities (or Collection)
are implemented. As for instrument drivers of DC power supplies, it is the Ooutput collection.

For the case of KikusuiPwx IVI-COM driver, its concept is in KikusuiPwxOutputs and
KikusuiPwxoutput. The plural name is the collection and singular name is each item (1 or
more items) which may exist in the collection. In general an IVI instrument driver for DC
power supply is desighed assuming the instrument is a multi-track model.

They have the same name except for differences plural and singular forms. Like this, a
component that has a plural name is generally called as Repeated Capabilities in the IVI spec.
(Also called as Collection in COM terminology). The COM interface having plural name such

as IKikusuiPwxOutputs normally has Count, Name, and Item properties (all read-only).
Count property returns number of objects, Name property returns the name of the indexed
object, and Item property returns reference to the object specified by a name. .

The following code example controls the output channel that is identified by "output0" for
the Kikusui PWX series DC supply.

Dim output As IKikusuiPwxOutput

Set output = inst.outputs.Item("Output0™)
output.voltageLevel = 20.0
output.CurrentLimit = 2.0

output.Enabled = True

Once the IKikusuiPwxOutput interface has been acquired, there is no difficulty at all.
The voltagelLevel and the CurrentLimit properties set voltage level and current limit
settings respectively. The EnabTed property switches output ON/OFF state.

Mind the grammar for acquiring the IKikusuiPwxOutput interface. This example here
acquires the IKikusuiPwxOutputs interface though the output property of the
IKikusuiPwx interface, then acquires IKikusuiPwxOutput interface by using the Item
property.

Now mind the parameter passed to the Item property. This parameter specifies the name
of the single output object to be referenced. Actual available names (Output Name) are
however different depending on drivers. For example, KikusuiPwx IVI-COM driver uses an

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 6/11

KIKUSUI ELECTRONICS Corp. Test & Measurement Instruments

IVI Instrument Driver Programming Guide

expression like "output0". However other drivers, even if being IviDCPwr class-compliant,
may have different names. One instrument driver, for example, may use an expression like
"Channell". Although available names on a particular instrument driver are normally
documented in the driver's online help, you can also check them out by writing some test
codes shown below.

Dim outputs As IKikusuiPwxOutputs
Set outputs = inst.outputs

Dim n As Integer
Dim c As Integer
C = outputs.Count

For n =1 To cC
Dim name As String
name = outputs.name(n)
Debug.Print name

Next

The Count property returns number of single objects that the repeated capabilities have.
The Name property returns the name of single object for the given index. The name is
exactly the one that can be passed to the Item property as a parameter. In the above
example, the codes iterate from the index 1 to Count by using the For/Next statement.
Mind that the index numbers for the Name parameter is one-based, not zero-based.

4- Error Handling

In the previous examples, there was no error handling processed. However, setting an out-
of-range value to a property or invoking an unsupported function may generate an error
from the instrument driver. Furthermore, no matter how the application is designed and
implemented robustly, it is impossible to avoid instrument I/O communication errors.

When using IVI-COM instrument drivers, every error generated in the instrument driver is
transmitted to the client program as a COM exception. In case of VBA, a COM exception can
be handled by using On Error Goto statement.

Now let's change the example of setting voltage and current as follows.

Sub CcommandButtonl_cClick()

On Error GoTo DRIVER_ERR:
Dim inst As IKikusuiPwx
Set inst = New KikusuiPwxLib.KikusuiPwx

inst.Initialize "TCPIP::192.168.1.5::INSTR", True, True, ""

Dim output As IKikusuiPwxOutput

Set output = inst.outputs.Item("Output0")
output.voltageLevel = 20.0
output.CurrentLimit = 2.0

output.Enabled = True

inst.Close

Exit Sub
DRIVER_ERR:

Debug.Print Err.Description
End Sub

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 7/11

KIKUSUI ELECTRONICS Corp. Test & Measurement Instruments

IVI Instrument Driver Programming Guide

In this example, errors are handled by using On Error Goto statement. For example, if
the name passed to the Item property is wrong, if an out-of-range value is passed to
VoltagelLevel, or if an instrument communication error is generated, a COM exception will
be generated in the instrument driver. Above example just displays a simple message in the
immediate window when an exception has occurred.

5- Example Using Class Interface

Now we explain how to use class interfaces. By using class interfaces, you can swap the
instruments without recompiling/relinking your application codes. In this case, however, IVI-
COM instrument drivers for both pre-swap and post-swap models must be provided, and
these drivers both must belong to the same instrument class. There is no interchangeability
available between different instrument classes.

5-1 Virtual Instrument

What you have to do before creating an application that utilizes interchangeability features is
create a virtual instrument. To realise interchangeability features, you should not write
codes that are very specific to a particular IVI-COM instrument driver (e.g. creating an object
instance directly as KikusuiPwx type) and should not write a specific VISA resource name
such as "TCPIP::192.168.1.5::INSTR". Writing them directly in the application spoils
interchangeability.

Instead, the IVI-COM specifications define methods to realise interchangeability by placing an
external IVI configuration store. The application indirectly selects an instrument driver
according to contents of the IVI Configuration Store, and accesses the indirectly loaded
driver through the class interfaces.

The IVI Configuration Store is normally C:/ProgramData/IVI Foundation/IVI
/IviConfigurationStore.XML file and is accessed through the IVI Configuration Server DLL.
This DLL is mainly used by IVI instrument drivers and some VISA/IVI configuration tools, not
by end-user applications. Instead, you can edit IVI driver configuration by using NI-MAX (NI
Measurement and Automation Explorer) bundled with NI-VISA or IVI Configuration Utility
bundled with KI-VISA.

Notes:

® As for how to edit virtual instrument settings using NI-MAX, refer to "IVI Instrument Driver
Programming Guide (LabVIEW Edition or LabWindows/CVI Edition)".

This guidebook assumes that a virtual instrument having the logical name mySupply is
already created, using KikusuiPwx driver, and using a VISA resource "
TCPIP::192.168.1.5::INSTR ".

5-2 Importing Type Libraries

What you should do first after creating a new project is import the type library of IVI-COM
class interfaces that you want to use. Choose Tools | References menu to bring up the
References dialogue. Since we use IviDCPwr class interfaces, check, IviDCPwr 2.0
TypelLibrary. Plus, select both IviDriver 1.0 Type Library and IviSessionFactory 1.0
TypelLibrary. You need select them regardless of the instrument class interface that you use.

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 8/11

KIKUSUI ELECTRONICS Corp. Test & Measurement Instruments

IVI Instrument Driver Programming Guide

-

SESENE - VBAProject

SHRRTRERSA IS 27 LA

' IviDCPwr 210 Type Library (xfd) -~
IviDigitizer 1.0 Twpe Library (xfd) il
LeiDmm 3.0 Twpe Library (x6d)
IviDowncorverter 10 Type Library (xG4) | Az

| IviDriver 1.0 Tvpe Library (x6d) (M .+ ZHR(B)..
IviEventServer OLL 1.0 T}.-'Fe Library

g

IviFeen 3.0 Tvpe Library (xG4) o

Frilxigync 100 Type Library (x(ﬁ-l:') wEEn |
IviPwrMeter 10 Twpe Library (x64

IviRFSieGen 1.1 Type Library (xfd) +

Fviscope 3.0 Type Library (xG4)

nFactory 1.0 Type Library

Ivispechn 10 Tvpe Library (x6d
TwiSmterh 90 Ture | ikreare (ALY
4 | (1 | 3

IviZezzionFactory 1.0 Type Library

18P G¥Program Files (x860%TWT Foundation®¥ TR Bin¥lviSessionF actory 4l
=8 =%

e

Figure 5-1 Importing Type Libraries

After completing reference settings, write the code fragments in the button handler. (Here,
write the complete codes including exception handling previously mentioned.)

Sub CommandButtonl_cClick()
On Error GoTo DRIVER_ERR

Dim sf As IIviSessionFactory
Set sf = New IviSessionFactory

Dim inst As IIviDCPwr
Set inst = sf.CreateDriver("mySupply")

inst.Initialize "mySupply", True, True, ""

Dim output As IIviDCPwroutput
Set output = inst.outputs.Item("Track_A")

output.voltageLevel = 20#
output.CurrentLimit = 2#
output.Enabled = True
inst.Close

Exit Sub

DRIVER_ERR:

Debug.Print Err.Description
End Sub

Now let's explain from the beginning.
5-3 Creating Object and Initializing Session

At first, notice that any type names beginning with Kikusui are not used. This example code
no longer has dependency on KikusuiPwx. Instead, the IVI class interfaces of IviDriver
and IviDCPwr, and SessionFactory object are used.

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 9/11

KIKUSUI ELECTRONICS Corp. Test & Measurement Instruments

IVI Instrument Driver Programming Guide

In contrast using specific interfaces, any dependency to specific components such as
KikusuiPwx cannot be written. Instead, it creates an instance of SessionFactory object,
and indirectly create a driver object that is configured in the IVI Configuration Store by using
CreateDriver method..

Now create an IviSessionFactory object, then obtain the reference to
IIviSessionFactory interface.

Dim sf As IIviSessionFactory
Set sf = New IviSessionFactory

Next, invoke the CreateDriver method passing the IVI Logical Name (Virtual Instrument).
The created object is actually an instance of KikusuiPwx driver, but here store the reference
to IIviDCPwr interface into the variable inst.

Dim inst As IIviDCPwr
set inst = sf.CreateDriver("mySupply")

If IVI Configuration Store is properly configured, the code will execute without generating
exceptions. However, at this point of time, it has not communicate with the instrument yet.
The DLL of IVI -COM driver is just loaded..

Then invoke Initialize method. At this point of time, communications with the
instrument begins. The 1st parameter to Initialize method was originally a VISA address
(VISA IO resource) but, here it shall be the IVI Logical Name. The IVI Configuration Store
already knows the linked info concerning to this Logical Name, such as Hardware Asset,
therefore the VISA address specified there will be actually applied.

inst.Initialize "mySupply", True, True,

As for IviDCPwr class, the Output object of DC power supply is found in the Outputs
collection. Similarly to the example of using specific interface, it obtains the reference to the
single output object from the collection. In this case, the interface type is
IIviDCPwroutput instead of IKikusuiPwxoOutput.

Dim output As IIviDCPwroutput

Set output = inst.outputs.Item("Track_A")
output.voltageLevel = 20.0
output.CurrentLimit = 2.0

output.Enabled = True

Mind the parameter that is passed to Item parameter. This parameter specifies the name of
single output object that you want to reference to. In the example using specific interfaces
it passed Physical Name that may be different by driver implementation basis, but not here.
This example cannot use such Physical Names very specific to an instrument driver
implementation (in fact it is possible to use but shall not to avoid spoiling interchangeability),
so we use a Virtual Name.

The virtual name "Track_A" that is used in the above example is what specified to map to
the physical name "output0" in the IVI Configuration Store.

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 10/11

KIKUSUI ELECTRONICS Corp. Test & Measurement Instruments

IVI Instrument Driver Programming Guide

5-4 Exchanging Instruments

Example shown so far were set to use kipwx instrument driver as the virtual instrument
configuration. Now what happens if changing the instrument to the one that is hosted by
AgN57xx driver (Agilent N5700 series DC Power Supply)? In this case, you don't have to
recompile/relink your application, however you have to change the configuration for IVI
Logical Name (virtual instrument). Basically the configuration shall change:

® Software Module in Driver Session tab (kipwx=»AgN57xx)
® map target of Virtual Names (OutputO=»Qutputl)

® 10 Resource Descriptor in Hardware Asset (changing to the VISAaddress of post-swap
instrument)

® Once the configuration is properly set, the above example will function with the post-
swap instrument without having to recompile.

Once the configuration is properly set, the above example will function with the post-swap
instrument without having to recompile.

Notes:

® For how to configure virtual instruments, refer to "IVI Instrument Driver Programming Guide
(LabVIEW Edition or LabWindows/CVI Edition)".

® The interchangeablity feature utilizing IVI class drivers does not guarantee the correct operation
between pre-swapping and post-swapping instruments. Please make sure to confirm that your
system correctly functions after swapping the instruments.

IVI Instrument Driver Programming Guide

Product names and company names that appear in this guidebook are trademarks or registered
trademarks of their respective companies.

©2012 Kikusui Electronics Corp. All Rights Reserved.

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 11/11

