
 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 1/11

IVI Instrument Driver
Programming Guide

 (Excel 2007 VBA Edition)
July 2012 Revision 2.0

1- Overview

1-1 Recommendation Of IVI-COM Driver

Excel VBA is one of the most suitable development environments for use with IVI-COM

instrument drivers. Since COM programming style such as using ActiveX controls is very
popular in VBA, many programmers are familiar with using them. Although an IVI-COM

instrument driver is not an ActiveX control, you can develop your programs in the same

manner that when you use generic COM objects.

Notes:

 This guidebook shows examples that use KikusuiPwx IVI instrument driver (KIKUSUI PWX series
DC Power Supply). You can also use IVI drivers for other vendors and other models in the same
manner.

 This guidebook describes how to create 32bit (x86) programs that run under Windows7 (x64),

using Excel 2007 VBA.

1-2 IVI Instrument Class Interface

When using an IVI instrument driver, there are two approaches – using specific interfaces

and using class interfaces. The former is to use interfaces that are specific to an instrument

driver and you can utilize the most of features of the instrument. The later is to utilize
instrument class interfaces that are defined in the IVI specifications allowing to utilize

interchangeability features, but instrument specific features are restricted.

Notes:

 The instrument class to which the instrument driver belongs is documented in Readme.txt for
each of drivers. The Readme document can be viewed from Start buttonAll
ProgramsKikusuiKikusuiPwx menu.

 If the instrument driver does not belong to any instrument classes, you can't utilize class
interfaces. This means that you cannot develop applications that utilize interchangeability

features.

2- Example Using Specific Interfaces

Here we introduce an example using specific interfaces. By using specific interfaces, you can

utilize the maximum feature (or model specific functions) provided by the driver but you have
to spoil interchangeability.

2-1 Preparation For Using VBA

This document shows example apps where a button control is directly placed on an Excel
sheet.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 2/11

The default state of Excel installation does not allow you to use VBA, so you need customize

Excel settings. After launching Excel, select Excel Options from the Microsoft Office
button (a circle button at the left end of the Ribbon).

Figure 2-1 Microsoft Office Button

Select Popular in the category pane, then select the Show Developer tab in the Ribbon

checkbox. Now Developer tab will be shown in the Ribbon menu.

Figure 2-2 Excel Options

Continuously, select Developer tab from the Ribbon menu.

Figure 2-3 Developer Menu

Select Macro Security from Code section on the Ribbon to bring up the Trust Center

dialogue, then select Enable all macros (not recommended; potentially dangerous

code can run) from Macro Settings.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 3/11

Figure 2-4 Trust Centre

After completing macro securities, continuously select Insert | Form Control | Button

(Form Control) from Control section on the Ribbon, then click a region where you want to
put a new button control. Then Assign Macro dialogue will be shown and select New to

create a new macro.

Figure 2-5 Assign Macro

After creating a macro the Visual Basic editor will open, then you will see the source code for
the button handler. Hereafter you write programs in this button hander.

3- Example Using Specific Interfaces

Here we introduce an example using specific interfaces. By using specific interfaces, you can

utilize the maximum feature (or model specific functions) provided by the driver but you have
to spoil interchangeability.

3-1 Importing Type Libraries

What you should do first after creating a new project is import the type libraries of IVI-COM
instrument drivers you want to use. Choose Tools | References menu to bring up the

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 4/11

References dialogue. Since this example assumes that you use KikusuiPwx IVI-COM driver,

you need select IVI KikusuiPwx 1.0 Type Library and IviDriver 1.0 Type Library.

Figure 3-1 Importing Type Libraries

3-2 Creating Object and Initializing Session

You write codes in the button handler previously created. Write the following code fragments

that opens a session for instrument driver object and close it. Here assume that an
instrument (Kikusui PWX series DC supply) having IP address 192.168.1.5 connected with

LAN interface.

 Dim inst As IKikusuiPwx
 Set inst = New KikusuiPwx

 inst.Initialize
 "TCPIP::192.168.1.5::INSTR", True, True, "QueryInstrStatus=1"
 inst.Close

Now let's talk about the parameters for the Initialize method. Every IVI-COM

instrument driver has an Initialize method that is defined in the IVI specifications. This

method has the following parameters.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 5/11

Table 3-1 Parameters for Initialize method

Parameter Type Description

ResourceName String VISA resource name string. This is decided according to
the I/O interface and/or address through which the
instrument is connected. For example, a LAN-based
instrument having IP address 192.168.1.5 will be
TCPIP::192.168.1.5::INSTR (when VXI-11case)

IdQuery Boolean Specifying TRUE performs ID query to the instrument.

Reset Boolean Specifying TRUE resets the instrument settings.

OptionString String Overrides the following settings instead of default:

RangeCheck
Cache
Simulate
QueryInstrStatus
RecordCoercions
Interchange Check

Furthermore you can specify driver-specific options if
the driver supports DriverSetup features.

ResourceName specifies a VISA resource. If IdQuery is TRUE, the driver queries the

instrument identities using a query command such as "*IDN?". If Reset is TRUE, the

driver resets the instrument settings using a reset command such as "*RST".

OptionString has two features. One is what configures IVI-defined behaviours such as
RangeCheck, Cache, Simulate, QueryInstrStatus, RecordCoercions, and

Interchange Check. Another one is what specifies DriverSetup that may be

differently defined by each of instrument drivers. Because the OptionString is a string

parameter, these settings must be written as like the following example:

QueryInstrStatus = TRUE , Cache = TRUE , DriverSetup=12345

(DriverSetup=12345 is only an imaginary parameter for explanation.)

Names and setting values for the features being set are case-insensitive. Since the setting
values are Boolean type, you can use any of TRUE, FALSE, 1, and 0. Use commas for

splitting multiple items. If an item is not explicitly specified in the OptionString
parameter, the IVI-defined default value is applied for the item. The IVI-defined default
values are TRUE for RangeCheck and Cache, and FALSE for others.

Some instrument drivers may have special meanings for the DriverSetup parameter. It

can specify items that are not defined by the IVI specifications when invoking the
Initialize method, and its purpose and syntax are driver-specific. Therefore, specifying

the DriverSetup must be at the last part on the OptionString parameter. Because the

contents of DriverSetup are different depending on each driver, refer to driver's Readme

document or online help.

3-3 Closing Session

To close the instrument driver session, use the Close method.

3-4 Execution

You can execute the previous codes for the time being. By clicking the button placed on the

worksheet (or by pressing F5 when the Visual Basic editor is active), the VBA macro will
operate. The codes written in the button handler are executed, and the program will
complete silently if the Initialize method call is succeeded. If a communication problem

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 6/11

has occurred or the VISA library is not configured properly, a COM exception (VBA runtime

error) will be generated.

We describe how to handle error (exceptions) later.

Figure 3-2 COM Exception

3-5 Repeated Capabilities, Output Collection

In case of IVI drivers for such as power supply or oscilloscope, the driver is designed

assuming the instrument has multiple channels. Therefore for properties and methods that

access instrument settings , there are a lot of cases that Repeated Capabilities (or Collection)
are implemented. As for instrument drivers of DC power supplies, it is the Output collection.

For the case of KikusuiPwx IVI-COM driver, its concept is in KikusuiPwxOutputs and

KikusuiPwxOutput. The plural name is the collection and singular name is each item (1 or

more items) which may exist in the collection. In general an IVI instrument driver for DC

power supply is designed assuming the instrument is a multi-track model.

 They have the same name except for differences plural and singular forms. Like this, a

component that has a plural name is generally called as Repeated Capabilities in the IVI spec.
(Also called as Collection in COM terminology). The COM interface having plural name such
as IKikusuiPwxOutputs normally has Count, Name, and Item properties (all read-only).

Count property returns number of objects, Name property returns the name of the indexed

object, and Item property returns reference to the object specified by a name. .

The following code example controls the output channel that is identified by "Output0" for

the Kikusui PWX series DC supply.

...
Dim output As IKikusuiPwxOutput
Set output = inst.Outputs.Item("Output0")
output.VoltageLevel = 20.0
output.CurrentLimit = 2.0
output.Enabled = True
...

Once the IKikusuiPwxOutput interface has been acquired, there is no difficulty at all.

The VoltageLevel and the CurrentLimit properties set voltage level and current limit

settings respectively. The Enabled property switches output ON/OFF state.

Mind the grammar for acquiring the IKikusuiPwxOutput interface. This example here

acquires the IKikusuiPwxOutputs interface though the Output property of the

IKikusuiPwx interface, then acquires IKikusuiPwxOutput interface by using the Item

property.

Now mind the parameter passed to the Item property. This parameter specifies the name

of the single Output object to be referenced. Actual available names (Output Name) are

however different depending on drivers. For example, KikusuiPwx IVI-COM driver uses an

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 7/11

expression like "Output0". However other drivers, even if being IviDCPwr class-compliant,

may have different names. One instrument driver, for example, may use an expression like
"Channel1". Although available names on a particular instrument driver are normally

documented in the driver's online help, you can also check them out by writing some test
codes shown below.

 Dim outputs As IKikusuiPwxOutputs
 Set outputs = inst.outputs

 Dim n As Integer
 Dim c As Integer
 c = outputs.Count

 For n = 1 To c
 Dim name As String
 name = outputs.name(n)
 Debug.Print name

 Next

The Count property returns number of single objects that the repeated capabilities have.

The Name property returns the name of single object for the given index. The name is

exactly the one that can be passed to the Item property as a parameter. In the above

example, the codes iterate from the index 1 to Count by using the For/Next statement.

Mind that the index numbers for the Name parameter is one-based, not zero-based.

4- Error Handling

In the previous examples, there was no error handling processed. However, setting an out-
of-range value to a property or invoking an unsupported function may generate an error

from the instrument driver. Furthermore, no matter how the application is designed and
implemented robustly, it is impossible to avoid instrument I/O communication errors.

When using IVI-COM instrument drivers, every error generated in the instrument driver is

transmitted to the client program as a COM exception. In case of VBA, a COM exception can
be handled by using On Error Goto statement.

Now let's change the example of setting voltage and current as follows.

Sub CommandButton1_Click()

 On Error GoTo DRIVER_ERR:
 Dim inst As IKikusuiPwx
 Set inst = New KikusuiPwxLib.KikusuiPwx

 inst.Initialize "TCPIP::192.168.1.5::INSTR", True, True, ""

 Dim output As IKikusuiPwxOutput
 Set output = inst.Outputs.Item("Output0")
 output.VoltageLevel = 20.0
 output.CurrentLimit = 2.0
 output.Enabled = True

 inst.Close

 Exit Sub
DRIVER_ERR:
 Debug.Print Err.Description
End Sub

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 8/11

In this example, errors are handled by using On Error Goto statement. For example, if

the name passed to the Item property is wrong, if an out-of-range value is passed to

VoltageLevel, or if an instrument communication error is generated, a COM exception will

be generated in the instrument driver. Above example just displays a simple message in the

immediate window when an exception has occurred.

5- Example Using Class Interface

Now we explain how to use class interfaces. By using class interfaces, you can swap the

instruments without recompiling/relinking your application codes. In this case, however, IVI-
COM instrument drivers for both pre-swap and post-swap models must be provided, and

these drivers both must belong to the same instrument class. There is no interchangeability

available between different instrument classes.

5-1 Virtual Instrument

What you have to do before creating an application that utilizes interchangeability features is

create a virtual instrument. To realise interchangeability features, you should not write
codes that are very specific to a particular IVI-COM instrument driver (e.g. creating an object

instance directly as KikusuiPwx type) and should not write a specific VISA resource name
such as "TCPIP::192.168.1.5::INSTR". Writing them directly in the application spoils

interchangeability.

Instead, the IVI-COM specifications define methods to realise interchangeability by placing an

external IVI configuration store. The application indirectly selects an instrument driver

according to contents of the IVI Configuration Store, and accesses the indirectly loaded
driver through the class interfaces.

The IVI Configuration Store is normally C:/ProgramData/IVI Foundation/IVI
/IviConfigurationStore.XML file and is accessed through the IVI Configuration Server DLL.

This DLL is mainly used by IVI instrument drivers and some VISA/IVI configuration tools, not

by end-user applications. Instead, you can edit IVI driver configuration by using NI-MAX (NI
Measurement and Automation Explorer) bundled with NI-VISA or IVI Configuration Utility

bundled with KI-VISA.

Notes:

 As for how to edit virtual instrument settings using NI-MAX, refer to "IVI Instrument Driver

Programming Guide (LabVIEW Edition or LabWindows/CVI Edition)".

This guidebook assumes that a virtual instrument having the logical name mySupply is

already created, using KikusuiPwx driver, and using a VISA resource "

TCPIP::192.168.1.5::INSTR ".

5-2 Importing Type Libraries

What you should do first after creating a new project is import the type library of IVI-COM

class interfaces that you want to use. Choose Tools | References menu to bring up the
References dialogue. Since we use IviDCPwr class interfaces, check, IviDCPwr 2.0

TypeLibrary. Plus, select both IviDriver 1.0 Type Library and IviSessionFactory 1.0
TypeLibrary. You need select them regardless of the instrument class interface that you use.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 9/11

Figure 5-1 Importing Type Libraries

After completing reference settings, write the code fragments in the button handler. (Here,
write the complete codes including exception handling previously mentioned.)

Sub CommandButton1_Click()

 On Error GoTo DRIVER_ERR

 Dim sf As IIviSessionFactory
 Set sf = New IviSessionFactory

 Dim inst As IIviDCPwr
 Set inst = sf.CreateDriver("mySupply")

 inst.Initialize "mySupply", True, True, ""

 Dim output As IIviDCPwrOutput
 Set output = inst.outputs.Item("Track_A")

 output.VoltageLevel = 20#
 output.CurrentLimit = 2#
 output.Enabled = True

 inst.Close

 Exit Sub

DRIVER_ERR:

 Debug.Print Err.Description
End Sub

Now let's explain from the beginning.

5-3 Creating Object and Initializing Session

At first, notice that any type names beginning with Kikusui are not used. This example code
no longer has dependency on KikusuiPwx. Instead, the IVI class interfaces of IviDriver

and IviDCPwr, and SessionFactory object are used.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 10/11

In contrast using specific interfaces, any dependency to specific components such as
KikusuiPwx cannot be written. Instead, it creates an instance of SessionFactory object,

and indirectly create a driver object that is configured in the IVI Configuration Store by using
CreateDriver method..

Now create an IviSessionFactory object, then obtain the reference to

IIviSessionFactory interface.

 Dim sf As IIviSessionFactory
 Set sf = New IviSessionFactory

Next, invoke the CreateDriver method passing the IVI Logical Name (Virtual Instrument).

The created object is actually an instance of KikusuiPwx driver, but here store the reference
to IIviDCPwr interface into the variable inst.

 Dim inst As IIviDCPwr

 set inst = sf.CreateDriver("mySupply")

If IVI Configuration Store is properly configured, the code will execute without generating

exceptions. However, at this point of time, it has not communicate with the instrument yet.
The DLL of IVI -COM driver is just loaded..

Then invoke Initialize method. At this point of time, communications with the

instrument begins. The 1st parameter to Initialize method was originally a VISA address

(VISA IO resource) but, here it shall be the IVI Logical Name. The IVI Configuration Store
already knows the linked info concerning to this Logical Name, such as Hardware Asset,

therefore the VISA address specified there will be actually applied.

 inst.Initialize "mySupply", True, True, ""

As for IviDCPwr class, the Output object of DC power supply is found in the Outputs

collection. Similarly to the example of using specific interface, it obtains the reference to the
single Output object from the collection. In this case, the interface type is

IIviDCPwrOutput instead of IKikusuiPwxOutput.

 Dim output As IIviDCPwrOutput
 Set output = inst.Outputs.Item("Track_A")
 output.VoltageLevel = 20.0
 output.CurrentLimit = 2.0

 output.Enabled = True

Mind the parameter that is passed to Item parameter. This parameter specifies the name of

single Output object that you want to reference to. In the example using specific interfaces

it passed Physical Name that may be different by driver implementation basis, but not here.
This example cannot use such Physical Names very specific to an instrument driver

implementation (in fact it is possible to use but shall not to avoid spoiling interchangeability),
so we use a Virtual Name.

The virtual name "Track_A" that is used in the above example is what specified to map to

the physical name "Output0" in the IVI Configuration Store.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 11/11

5-4 Exchanging Instruments

Example shown so far were set to use kipwx instrument driver as the virtual instrument
configuration. Now what happens if changing the instrument to the one that is hosted by

AgN57xx driver (Agilent N5700 series DC Power Supply)? In this case, you don't have to

recompile/relink your application, however you have to change the configuration for IVI
Logical Name (virtual instrument). Basically the configuration shall change:

 Software Module in Driver Session tab (kipwxAgN57xx)

 map target of Virtual Names (Output0Output1)

 IO Resource Descriptor in Hardware Asset (changing to the VISAaddress of post-swap
instrument)

 Once the configuration is properly set, the above example will function with the post-
swap instrument without having to recompile.

Once the configuration is properly set, the above example will function with the post-swap

instrument without having to recompile.

Notes:

 For how to configure virtual instruments, refer to "IVI Instrument Driver Programming Guide
(LabVIEW Edition or LabWindows/CVI Edition)".

 The interchangeablity feature utilizing IVI class drivers does not guarantee the correct operation
between pre-swapping and post-swapping instruments. Please make sure to confirm that your
system correctly functions after swapping the instruments.

IVI Instrument Driver Programming Guide
Product names and company names that appear in this guidebook are trademarks or registered
trademarks of their respective companies.
©2012 Kikusui Electronics Corp. All Rights Reserved.

