
 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 1/17

IVI Instrument Driver
Programming Guide

 (LabWindows/CVI Edition)
June 2012 Revision 2.1

1- Overview

1-1 Recommendation Of IVI-C Driver

LabWindows/CVI is a C language based (C++ unsupported) development environment.
Therefore it is easier to use function-based DLL (C DLL) than handling COM DLL. Plus, the

fundamental architecture of IVI-C Instrument Driver is what expanded from VXI Plug&Play
Instrument Driver, which is in turn expanded from LabWindows/CVI Instrument Driver.

(Common requirement of each driver architecture is different, but physical structure of the

driver is still the same LabWindows/CVI drivers.)

Therefore this guidebook recommends using IVI-C instrument drivers.

Notes:

 This guidebook shows examples that use KikusuiPwx IVI instrument driver (KIKUSUI PWX series
DC Power Supply). You can also use IVI drivers for other vendors and other models in the same

manner.

 This guidebook describes how to create 32bit (x86) programs that run under Windows7 (x64),
using LabWindows/CVI 2010.

1-2 IVI Instrument Class Interfaces

When using an IVI instrument driver, there are two approaches – using specific interfaces

and using class interfaces. The former is to use interfaces that are specific to an instrument
driver and you can utilize the most of features of the instrument. The later is to utilize

instrument class interfaces that are defined in the IVI specifications allowing to utilize
interchangeability features, but instrument specific features are restricted.

Notes:

 The instrument class to which the instrument driver belongs is documented in Readme.txt for
each of drivers. The Readme document can be viewed from Start buttonAll
ProgramsKikusuiKikusuiPwx menu.

 If the instrument driver does not belong to any instrument classes, you can't utilize class
interfaces. This means that you cannot develop applications that utilize interchangeability
features.

2- Example Using Specific Interfaces

Here we introduce an example using specific interfaces. By using specific interfaces, you can

utilize the maximum feature (or model specific functions) provided by the driver but you have
to spoil interchangeability.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 2/17

2-1 Creating Application Project

Launch LabWindows/CVI 2010, then from Welcome page select New | Project to create a

new project. If the existing project is automatically read when launching without seeing
Welcome page, select File | New | Project (*.prj) menu. Although this guidebook

assumes that you use the IVI-C driver with a new application project, you can also apply the

same manner for existing projects. Although this guidebook assumes that you use the IVI-C
driver with a new application project, you can also apply the same manner for existing

projects.

After creating the new project, it is recommended to save it first by choosing File | Save

Untitled.PRJ As… menu. This example assumes that the project is Ex01.prj. Since there

are no C source files yet immediately after creating the project, create a new source file with
File | New | Source (*.c)… menu then store it as Ex01.C. Furthermore append the

source file to the project by choosing File | Add Ex01.c to Project menu.

2-2 Loading Instrument Driver

Select Instrument| Load menu, then select kipwx.fp located in the C:/Program Files

(x86)/IVI Foundation/IVI/Drivers/kipwx directory. Then the Instrument |
KikusuiPwx... menu will be added.

Figure 2-1 Instrument Menu

2-3 Writing Codes

Inserting Function Call

Open the C source code (Ex01.c) that was added to the project. Currently there is no code

written. Next, select Instrument | KikusuiPwx menu.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 3/17

Figure 2-2 Select Function Panel

Select Initialize With Options then click the Select button. Then Initialize With
Options function panel appears.

Figure 2-3 Initialize With Options function

Here, specify each parameter of the function as shown below.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 4/17

Table 2-1 Each Parameter Value

Parameter Value

ResourceName "TCPIP::192.168.1.5::INSTR"

IdQuery On (VI_TRUE as in function call code)

Reset On (VI_TRUE as in function call code)

OptionString "QueryInstrStatus=1"

Vi &vi

Status Vs

Notes:

 This example assumes that the instrument is connected through LAN interface having IP address
192.168.1.5.

 Do not forget to enclose ResourceName and OptionString with double-quotations because

these parameters are string.

The variable vi you input here requires declaration. While selecting this control on the

function panel, select Code | Declare Variable... menu (or Ctrl+D) to open Declare

Variable dialogue, then check both Execute declaration in Interactive Window and

Add declaration to top of target file "Ex01.c" and then click OK. Similarly the variable
vs also requires declaration. Add declaration on the top of code in the same manner.

And then, insert a calling code of kipwx_InitWithOptions in the source code (Ex01.c)

with Code | Insert Function Call menu (or Ctrl+I).

Similarly, from Select Function Panel dialog, select Close to show the Close function
pane. Here type vi for the parameter Vi, type vs for Status. Then insert a calling code of

kipwx_close in the source code (Ex01.c) with Code | Insert Function Call menu.

Figure 2-4 Close Function Panel

At this point of time, the C source code is like below.

static ViStatus vs;

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 5/17

static ViSession vi;

vs = kipwx_InitWithOptions ("TCPIP::192.168.1.5::INSTR", VI_TRUE, VI_TRUE,
 "QueryInstrStatus=1", &vi);

vs = kipwx_close (vi);

However, this is not a valid form for executable program. Enclose the entire block with the
main function, then add an include line that specifies to read the instrument driver's include

file. Finally add function calls, which configure voltage and current settings and output
ON/OFF control, between the InitWithOptions and close calls. You may add source

codes directly into the source code editor.

#include <kipwx.h>
static ViStatus vs;
static ViSession vi;

void main()
{
vs = kipwx_InitWithOptions ("TCPIP::192.168.1.5::INSTR", VI_TRUE, VI_TRUE,
 "QueryInstrStatus=1", &vi);

vs = kipwx_ConfigureVoltageLevel (vi, "", 20);
vs = kipwx_ConfigureCurrentLimit (vi, "", KIPWX_VAL_CURRENT_REGULATE, 2.0);
vs = kipwx_ConfigureOutputEnabled (vi, "", 1);

vs = kipwx_close (vi);

}

Building Project

Select Build | Create Debuggable Executable (Ctrl+M) menu to build your project. The
build process will soon complete if there is no error especially.

2-4 Program Execution

Above example opens the instrument driver session, configures voltage/current/output, then

immediately closes the session. Just executing the program, you can't see what is how
executed because the program is not interactive. Here, set the Breakpoint on the function
call code for kipwx_InitWithOptions. A breakpoint can be set with the Run | Toggle

Breakpoint (or F9) menu.

Selecting Run | Debug Ex01_dbg.exe menu will execute the program, and the instruction
automatically stops at the kipwx_InitWithOptions function call, where the Breakpoint is

set. Select Run | Step Over (or F10) to execute that line.

Pay attention to the vs and vi values after kipwx_InitWithOptions is invoked. When

the driver session has been successfully opened, vi contains the session handle (normally
0x00000001 or greater as an IVI handle), and vs contains the error code (0x00000000 if

succeeded, or negative value if failed).

Pressing F10 furthermore, execute the kipwx_ConfigureVoltageLevel call and

kipwx_ConfigureCurrentLimit call sequentially. For each case, the error code is

stored in the vs.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 6/17

If the vs value is negative, it is meant that a function call has failed generating an error. By

adding the following code fragment, you can convert the error code to the corresponding

human-readable English message.

char buf[256];
...
kipwx_error_message (VI_NULL, vs, buf);

Note:

 An IVI instrument driver for DC Power Supply is generally designed with considering multi-channel
use, therefore many of instrument setting functions have the ChannelName parameter.

 When the instrument only has one channel, the ChannelName can be a black string, however

explicit name is required when the instrument has multiple channels.

 In many case the ChannelName can be like "Output1" or "Channel" but they may be
different for each IVI driver. For example, Kikusui PWX Series DC Power Supply assigns channel
numbers from zero under Multi-Drop expanded operations, so the first channel name is
"Output0".

3- Description

3-1 Opening Instrument Driver Session

To open the driver session, the kipwx_InitWithOptions function is used. Although the

prefix kipwx_, which is applied to each function is different on the instrument driver basis,

such naming convention is applied to every IVI-C instrument driver.

vs = kipwx_InitWithOptions ("TCPIP::192.168.1.5::INSTR", VI_TRUE, VI_TRUE,
 "QueryInstrStatus=1", &vi);

Notes:

 As a terminology of IVI-C and VXI Plug&Play Instrument Driver, the term <prefix> is frequently
used. This is an identifier name that is given for each instrument driver, and kipwx is the one for
this guidebook. For example, a generic expression <prefix> init() specifies kipwx init()for the
kipwx instrument driver.

 Every driver function other than <prefix> init() and <prefix> InitWithOptions() has the 1st
parameter as ViSession and the return value is all ViStatus type..

 <prefix> init() function is remained for the compatibility with VXI Plug&Play drivers. This is
equivalent to <prefix> InitWithOptions() with exception that OptionString cannot be

specified.

Now let 's talk about parameters of the kipwx_InitWithOptions function. Every IVI-C

instrument driver has the <prefix>_InitWithOptions function that is defined by the IVI

specifications. This function has the following parameters.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 7/17

Table 3-1 Parameters for InitWithOptions function

Parameter Type Description

ResourceName ViRsrc
(const char*)

VISA resource name string. This is decided according to
the I/O interface and/or address through which the
instrument is connected. For example, a LAN-based
instrument having IP address 192.168.1.5 will be
TCPIP::192.168.1.5::INSTR (when VXI-11case).

idQuery ViBoolean

Specifying VI_TRUE performs ID query to the

instrument.

Reset ViBoolean Specifying VI_TRUE resets the instrument settings.

OptionString ViConstString
(const char*)

Overrides the following settings instead of default:

RangeCheck
Cache
Simulate
QueryInstrStatus
RecordCoercions
Interchange Check

Furthermore you can specify driver-specific options if
the driver supports DriverSetup features.

Vi ViSession* Receives the instrument session. (The parameter is a
pointer)

ResourceName specifies a VISA address (resource name). If IdQuery is VI_TRUE, the
driver queries the instrument identities using a query command such as "*IDN?". If

resetDevice is VI_TRUE, the driver resets the instrument settings using a reset command

such as "*RST".

OptionString has two features. One is what configures IVI-defined behaviours such as

RangeCheck, Cache, Simulate, QueryInstrStatus, RecordCoercions, and

Interchange Check. Another one is what specifies DriverSetup that may be

differently defined by each of instrument drivers. Because the OptionString is a string

parameter, these settings must be written as like the following example:

QueryInstrStatus = TRUE , Cache = TRUE , DriverSetup=12345

Names and setting values for the features being set are case-insensitive. Since the setting
values are ViBoolean type, you can use any of VI_TRUE, VI_FALSE, 1, and 0. Use commas

for splitting multiple items. If an item is not explicitly specified in the OptionString
parameter, the IVI-defined default value is applied for the item. The IVI-defined default
values are VI_TRUE for RangeCheck and Cache, and VI_FALSE for others.

Some instrument drivers may have special meanings for the DriverSetup parameter. It

can specify items that are not defined by the IVI specifications when invoking the
InitWithOptions function, and its purpose and syntax are driver-specific. Therefore,
specifying the DriverSetup must be at the last part on the OptionString parameter.

Because the contents of DriverSetup are different depending on each driver, refer to

driver's Readme document or online help.

3-2 Channel Access

When supporting power supply and/or oscilloscope instruments, the IVI instrument driver is
generally designed assuming the instrument has multiple channels. Therefore, driver

functions operating instrument panel settings often have the 2nd parameter, which specifies
the channel.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 8/17

Example：

vs = kipwx_ConfigureVoltageLevel(vi, "", 20.0);

This example uses the KikusuiPwx (prefix name is kipwx in IVI-C) driver that operates the

Kikusui PWX DC power supply, the channel name can be blank (when the channel is only
one) or "Output0". Channel names are defined by the instrument driver for each,

therefore different naming convention is applied on driver basis. Refer to the driver's on-line
help for what channel names can be actually used.

3-3 Closing Session

 To close the instrument driver session, use the <prefix>_close function.

.

vs = kipwx_close (vi);

4- Error Handling

In the previous example, there was no error handling processed. However, setting an out-

of-range value to a function or invoking an unsupported function may generate an error from
the instrument driver. Furthermore, no matter how the application is designed and

implemented robustly, it is impossible to avoid instrument I/O communication errors.

When using IVI-C instrument drivers, every error generated in the instrument driver is
transmitted to the client program through the return value as the ViStatus type.

Table 4-1 Rough classification of ViStatus

Value Range Description

vs=0 Success

vs>0 Warning

vs<0 Error

Although you can identify what error is generated with the ViStatus return, you can

convert the code to more readable message by using error_message function. This

function exceptionally accepts the VI_NULL as the ViSession parameter. Make sure that

the receive buffer has 256 bytes or larger area.

char buf[256];
...
kipwx_error_message (VI_NULL, vs, buf);

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 9/17

5- Example Using Class Driver

Now we explain how to use class interfaces. By using class interfaces, you can swap the
instruments without recompiling/relinking your application codes. In this case, however, IVI-

C instrument drivers for both pre-swap and post-swap models must be provided, and these
drivers both must belong to the same instrument class. There is no interchangeability

available between different instrument classes.

5-1 Virtual Instrument

What you have to do before creating an application that utilizes interchangeability features is

create a virtual instrument. To realise interchangeability features, you should not write
codes that are very specific to a particular IVI-C instrument driver (e.g. invoking the
kipwx_init function) and should not write a specific VISA address (resource name) such

as "TCPIP::192.168.1.5::INSTR ". Writing them directly in the application spoils

interchangeability.

Instead, the IVI specifications define methods to realise interchangeability by placing the

external IVI Configuration Store. The application indirectly selects an instrument driver
according to contents of the IVI Configuration Store, and accesses the indirectly loaded

driver through the class driver that has no dependency to specific instrument models.

The IVI Configuration Store is normally C:/ProgramData/IVI
Foundation/IVI/IviConfigurationStore.XML file and is accessed through the IVI

Configuration Server DLL. This DLL is mainly used by IVI instrument drivers and some
VISA/IVI configuration tools, not by end-user applications. When using LabWindows/CVI,

the NI-MAX (NI Measurement and Automation Explorer) software provided by National
Instruments allows you to perform IVI driver configurations.

Creating Driver Session

After launching NI-MAX, refer to the IVI Drivers node on the tree. Right-click on the
Driver Session then select Create New (case sensitive)... menu to create a new Driver
Session. Being asked for its name, give the name mySupply. Selecting General tab you

will see the following screen.

Figure 5-1 NI-MAX General Tab

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 10/17

Creating Hardware Asset

Subsequently select the Hardware tab to show the hardware asset management screen.

The hardware asset specifies what interface route your actual instrument is connected
through. Here you click the Add button to create a new Hardware Asset. Being asked for
its name, give the name mySupply again, furthermore specify a valid VISA address

(TCPIP::192.168.1.5::inst0::INSTR in this case) though which the actual instrument is
connected, as Resource Descriptor.

Figure 5-2 NI-MAX Hardware Tab

Setting Linkage for Software Module

Subsequently select the Software tab to show the software module management screen.
The software module specifies the instrument driver module (DLL module). Here select

kipwx from the Software Module list.

Figure 5-3 NI-MAX Software Tab

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 11/17

Creating Virtual Name

Subsequently select the Virtual Names tab to show the virtual name management screen.

Normally, when channel names are related such as for power supply drivers, valid channel
names are different depending on the drivers. Therefore, these channel names also have to
be virtualized. Click the Add button to add a virtual name, then type "Track_A" for

Virtual Name. Furthermore from Physical Name list, channels names that are working for
the actual instrument are enumerated, On the list, IviDcpwrChannel!!Output0 is only

shown so select it, or simply type Output0.

Notes:

 Depending on driver's implementation or configuration of multi-channel power supplies, not all the
channel names may be shown. As for valid channel names for each driver, refer to driver's

Readme.txt or online help.

Figure 5-4 NI-MAX Virtual Names Tab

Creating Logical Name and linkage

Finally create a logical name. The logical name is equivalent to the name of virtual
instrument configured with the NI-MAX. Refer to the IVI Drivers node on the tree. Right-

click the Logical Name then select the Create New (case-sensitive) menu to create the
new logical name. Being asked for its name, give the name mySupply. Furthermore, select
mySupply from the Driver Session list.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 12/17

Figure 5-5 NI-MAX General Tab

Configuration for the virtual instrument is complete. Click the Save IVI Configuration

button placed at the upper screen on the NI-MAX to save changes.

5-2 Creating Application Project

Here launch LabWindows/CVI.

As you launch the LabWindows/CVI integrated environment, a new application project is
created. If the existing project is automatically read when launching, select File | New |

Project (*.prj) menu. Although this guidebook assumes that you use the IVI-C driver with

a new application project, you can also apply the same manner for existing projects.

After creating the new project, it is recommended to save it first by choosing File | Save

Untitled.PRJ As… menu. This example assumes that the project is Ex02.prj. Since there
are no C source files yet immediately after creating the project, create a new source file with

File | New | Source (*.c)… menu then store it as Ex02.C. Furthermore append the

source file to the project by choosing File | Add Ex02.c to Project menu.

5-3 Loading Instrument Driver

Select Instrument| Load menu, then select IviDCPwr.fp located in the C:/Program
Files (x86)/IVI Foundation/IVI/Drivers/ividcpwr directory. Then the Instrument |

IviDCPwr Class Driver menu will be added.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 13/17

Figure 5-6 Instrument Menu

5-4 Writing Codes

Inserting Function Call

Open the C source code (Ex02.c) that was added to the project. Currently there is no code
written. Next, select Instrument | IviDCPwr Class Driver menu.

Figure 5-7 Select Function Panel

Select Initialize With Options then click the Select button. Then the Initialize With
Options function panel appears. Here, type &vi for Instrument Handle, and type vs for

Status.

The variable vi you input requires declaration. While selecting this control on the function

panel, select Code | Declare Variable... menu (or Ctrl+D) to open Declare Variable
dialogue, then check both Execute declaration in Interactive Window and Add
declaration to top of target file "Ex02.c" and then click OK. Similarly the variable vs

also requires declaration. Add declaration on the top of code in the same manner.

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 14/17

Keep the Option String default. At Logical Name, specify "mySupply" that was

configured in the NI-MAX previously. After that, select Code | Insert Function Call menu
to insert the function call code for IviDCPwr_InitWithOptions into the source code

(Ex02.c).

Figure 5-8 Initialize With Options Function Panel

Similarly, select Close at the Select Function Panel dialog to show the Close function panel.
Here, type vi for Instrument Handle and type vs for Status. After that, select Code |

Insert Function Call menu to insert the function call code for IviDCPwr_close into the

source code (Ex02.c).

Figure 5-9 Close Function Panel

At this point of time, the C source code is like below:

static ViStatus vs;
static ViSession vi;

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 15/17

vs = IviDCPwr_InitWithOptions ("mySupply", VI_TRUE, VI_TRUE,
 "Simulate=0,RangeCheck=1,QueryInstrStatus=0,Cache=1", &vi);

vs = IviDCPwr_close (vi);

However, this is not a valid form for executable program. Enclose the entire block with the
main function, then add an include line that specifies to read the class driver's include file.

Furthermore add variable declarations for vi and vs. Finally add function calls, which

configure voltage and current settings and output ON/OFF control, between the
InitWithOptions and close calls. You may add source codes directly into the source

code editor.

#include <IviDCPwr.h>
static ViSession vi = 0;
static ViStatus vs = 0;

void main()
{

vs = IviDCPwr_InitWithOptions ("mySupply", VI_TRUE, VI_TRUE,
 " Simulate=0,RangeCheck=1,QueryInstrStatus=0,Cache=1", &vi);

vs = IviDCPwr_ConfigureVoltageLevel (vi, "Track_A", 20);
vs = IviDCPwr_ConfigureCurrentLimit (vi, "Track_A",
IVIDCPWR_VAL_CURRENT_REGULATE, 2.0);
vs = IviDCPwr_ConfigureOutputEnabled (vi, "Track_A", 1);

vs = IviDCPwr_close (vi);

}

Building Project

Select Build | Create Debuggable Executable menu to build your project. The build
process will soon complete if there is no error especially.

6- Description

6-1 Opening Class Driver Session

To open the driver session, the IviDCPwr_InitWithOptions function is used. The prefix

IviDCPwr_ is specific to the IviDCPwr class driver. . In this program that utilizes the class

driver, there never be dependency to instrument drivers of specific models such as kipwx
(our PWX series DC Power Supply) or AgN57xx (Agilent N5700 series DC Power Supply).

vs = IviDCPwr_InitWithOptions ("mySupply", VI_TRUE, VI_TRUE,

 "Simulate=0,RangeCheck=1,QueryInstrStatus=1,Cache=1", &vi);

Class drivers are different with normal instrument drivers, thus you cannot pass VISA address
to the InitiWithOptions function directly. Instead, pass the logical name "mySupply"

configured in the NI-MAX. The class driver, by referencing to the logical name, searching for
the appropriate instrument driver DLL (Software Module) and VISA address (Hardware Asset),
then at last invokes the kipwx_InitWithOptions indirectly.

Although the contents for OptionString (Cache、Range Check, Record Coercions,

Interchange Check, Query Instrument Status, and Driver Setup string) are exactly the same

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 16/17

as when using the specific driver, the default values for the case the parameter was omitted
are different. The default values when using a specific driver were the ones that were

defined by the IVI specifications, however, the default values when using the a class driver
are the ones that are configured at the Driver Session in the IVI Configuration Store. In
any cases, what explicitly specified through OptionString parameter of Init
WithOptions function is the first priority.

6-2 Channel Access

When supporting power supply and/or oscilloscope instruments, the IVI instrument driver is

generally designed assuming the instrument has multiple channels. Therefore, driver

functions operating instrument panel settings often have the 2nd parameter, which specifies
the channel.

例：

vs = IviDCPwr_ConfigureVoltageLevel(vi, "Output0", 20.0);

This example uses the class driver specifying the channel name "Output0" that can only be

applied to a specific instrument driver (kipwx driver in this case). This method can control the
instrument, however, using names that depend on specific instrument driver will spoil

interchangeability. For example, a valid channel name for AgN57xx instrument driver is
"Output1".

In above NI-MAX configuration, we added the virtual name "Track_A" and configured as it

can be converted to the physical name "Output0". Therefore we can use the virtual name

for the channel name.

When exchanging the instrument drivers, change the IVI configuration for Hardware (VISA
address for instrument I/O connection) set by Driver Session, Software (instrument driver to

be used), and Physical Names (physical name to which the virtual name is mapped), so that

operation can continue to work.

vs = IviDCPwr_ConfigureVoltageLevel(vi, "Track_A", 20.0);

When exchanging the instrument drivers, change the IVI configuration for Hardware (VISA

address for instrument I/O connection) set by Driver Session, Software (instrument driver to

be used), and Physical Names (physical name to which the virtual name is mapped), so that
operation can continue to work.

Notes:

 The setting info of IVI Configuration is stored in C:/ProgramData/IVI
Foundation/IVI/IviConfigurationStore.xml. Do not edit this XML file by hands.

 The IVI Configuration is commonly shared between all 32bit/64bit T&M applications and all log-on

users in the same PC.

6-3 Closing Session

To close the instrument driver session, use IviDCPwr_close function.

vs = IviDCPwr_close (vi);

 IVI Instrument Driver Programming Guide

©2012 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 17/17

6-4 Exchanging Instruments

Example shown so far were set to use kipwx instrument driver as the virtual instrument

configuration. Now what happens if changing the instrument to the one that is hosted by
AgN57xx driver (Agilent N5700 series DC Power Supply)? In this case, you don't have to

recompile/relink your application, however you have to change the configuration for IVI

Logical Name (virtual instrument). Basically the configuration shall change:

 Software Module in Driver Session tab (kipwxAgN57xx)

 map target of Virtual Names (Output0Output1)

 IO Resource Descriptor in Hardware Asset (changing to the VISAaddress of post-swap

instrument)

 Once the configuration is properly set, the above example will function with the post-

swap instrument without having to recompile.

Once the configuration is properly set, the above example will function with the post-swap

instrument without having to recompile.

Notes:

 The interchangeablity feature utilizing IVI class drivers does not guarantee the correct operation
between pre-swapping and post-swapping instruments. Please make sure to confirm that your

system correctly functions after swapping the instruments.

IVI Instrument Driver Programming Guide
Product names and company names that appear in this guidebook are trademarks or registered
trademarks of their respective companies.
©2012 Kikusui Electronics Corp. All Rights Reserved.

