オペレーションガイド

アプリケーションソフトウェア

Quick Immunity Sequencer 2

Ver. 3.x

本書について

本書は一部または全部を印刷して使用していただくための PDF 版オペレーションガイドです。

■著作権・発行

本書の一部または全部の転載、複写は著作権者の許諾が必要です。

本書の内容は予告なく変更することがあります。

© 2011 菊水電子工業株式会社

もくじ

はじめに	3
Quick Immunity Sequencer 2 とはイミュニティ試験の性能レベル	
画面の構成	6
リミット値を設定する	8
試験条件を設定する	
試験条件 ツールバー プログレスバーと PCR-LE の動作状態表示	12
PCR-LE の出力モード	
試験条件をファイルとして保存する 試験条件を呼び出す	
試験信号の観測	
表示オプション 	16
試験を実行する	18
実行の前に 実行	
停止	
- 異常時の対処	
結果リスト	
試験結果を保存する	22
IEC61000-4-11	24
試験の概要	
電圧ディップおよび短時間停電	24
電圧変動	26
IEC61000-4-13	27
試験の概要	
フラットカーブ	
オーバースイング	
周波数スイープ	
奇数次高調波	
偶数次高調波	
次数間高調波	
マイスターカーブ	33

EC61000-4-14	34
試験の概要 電圧動揺	
电圧動団インターバル	
EC61000-4-17	
試験の概要	
単相および三相整流回路のリップル	39
EC61000-4-27	40
試験の概要	40
不平衡	
EC61000-4-28	42
試験の概要	
電源周波数変動	
EC61000-4-29	 4 4
試験の概要	44
DC 電源の電圧ディップおよび短時間停電	44
DC 電源の電圧変動	45
EC61000-4-34	46
試験の概要	
インターフェースを設定する	47
ディスプレイの文字サイズについて 	48
ディスプレイの文字サイズを変更する	49
エラーメッセージー覧	50
エラーカラビーラー 見	50
メニューリファレンス	51

はじめに

本オペレーションガイドは、Quick Immunity Sequencer 2(QIS2)を使用して、低周波配電系統に接続される電気・電子機器、および DC 電源入力ポートを持つ電気・電子機器のイミュニティ試験を行う方法を説明します。

■ 適用する製品のバージョン

本オペレーションガイドは、バージョン 3.x の Quick Immunity Sequencer 2 に適用します。 バージョンは、「ヘルプ」メニューから「Quick Immunity Sequencer 2 のバージョン情報 (A)」 で確認できます。

■ オペレーションガイドの対象読者

本オペレーションガイドは、交流電源 PCR-LE シリーズまたは PCR-LE2 シリーズを使用して、低周波配電系統に接続される電気・電子機器、および DC 電源入力ポートを持つ電気・電子機器のイミュニティ試験をされる方、または操作の指導をされる方を対象にしています。電気・電子機器のイミュニティ試験に関する知識を有する方を前提に説明しています。

■本書の表記

- 本文中では、Quick Immunity Sequencer 2 を「QIS2」、交流電源 PCR-LE シリーズおよび PCR-LE2 シリーズを「PCR-LE」と呼ぶことがあります。
- ・ 本文中の「PC」は、パーソナルコンピュータやワークステーションの総称です。
- ・ 本文中では、説明に以下のマークを使用しています。
- **NOTE** 知っておいて頂きたいことを示しています。
- **参照** 詳細についての参照先を記しています。
 - > 選択する項目の階層を示しています。「>」の左の項目が上位の階層になります。

3

Quick Immunity Sequencer 2 とは

QIS2 は交流電源 PCR-LE シリーズまたは PCR-LE2 シリーズを使って試験を実行するアプリケー ションソフトウェアです。

交流電源環境における様々な現象をシミュレーションできます。下記に示す規格の条件で、 低圧配電系統に接続される電気・電子機器、および DC 電源入力ポートを持つ電気・電子機 器のイミュニティ試験に使用できます。試験条件は規格範囲を超えて設定できるので、規格 試験前の予備試験、イミュニティの余裕度試験およびストレス試験に使用できます。

• IEC61000-4-11(2004-03)Edition2.0 Corrigendum(2010-08)

電圧ディップ、短時間停電、電圧変動

• IEC61000-4-13(2009-07)Edition1.1

高調波、次数間高調波

電圧動揺

• IEC61000-4-14(2009-08)Edition1.2 • IEC61000-4-17(2009-01)Edition1.2

DC 電源入力ポートのリップル

• IEC61000-4-27(2009-04)Edition1.1

不平衡

• IEC61000-4-28(2009-04)Edition1.2

電源周波数変動

• IEC61000-4-29(2000-08)1st.Edition

DC 電源入力ポートの電圧ディップ、短時間停電、

電圧変動

• IEC61000-4-34(2009-11)Edition1.1

電圧ディップ、短時間停電、電圧変動

以降の規格番号等表記は、発行年月および版を省略し、規格番号のみとします。

IEC61000-4-29、および IEC61000-4-34 規格を除いて、各規格が適用される機器は、1 相当たり の定格電流が 16A 以下です。QIS2 ではこの条件について一切考慮しておりませんので、この 点に関してはお客様の判断でご使用ください。

● 規格要求事項に適合しない項目

QIS2 ではハードウェアを含めた試験構成において、規格要求事項に適合しない項目がありま す。内容の詳細は該当する規格の項目を参照してください。

⚠ 注意

- QIS2 は、波形バンク *1 (0 \sim 63) を使用するため、波形バンク内の波形データは上書きさ れます。また三相運転では、U相と同じ波形データがV相およびW相の波形バンクにも 書き込まれます。既に PCR-LE 本体のみで波形バンクを使用して、波形バンク内に必要な 波形データが存在する場合は、アプリケーションソフトウェア Wave Bank Memory を使用 して波形データをパソコンのハードディスクなどに保存することをお勧めします。
 - *1. PCR-LE では出力波形データを内部のメモリーに格納しています。 その波形データを 格納する、メモリーの 1 波形分領域のことを波形バンクといい、0 ~ 63 のバンクが あります。QIS2 はすべての波形バンク($0 \sim 63$)を使用します。

波形バンク 0 には、PCR-LE の基準電圧波形となる正弦波データが格納されていま す。工場出荷時の状態では、すべての波形バンクに波形バンク0と同じ波形(正弦 波)が入っています。

試験条件によって、QIS2 は波形バンク 0 を正弦波ではないデータに書き換えること があります。波形バンク 0 が書き換えられても QIS2 から PCR-LE を使用している間 は問題ありません。もし試験終了後すぐに PCR-LE を単体で使用する場合には、波 形バンク 0 を正弦波データに戻すために、PCR-LE の POWER スイッチを一度オフに してください。

•••••

イミュニティ試験の性能レベル

イミュニティ試験は、試験信号を電圧発生器で発生させ、供試機器に印加します。このときの供試機器の動作を、機能喪失または性能低下の観点から、下記の4つの性能レベルに分類することによって、試験結果の判定を行います。分類の基準は、機器の製造業者、試験の請求者または機器の製造業者と購入者間の合意によって規定された性能レベルとなります。

- 製造業者、試験の請求者または購入者によって規定された仕様限度内の正常な性能。
- ・ 妨害がなくなった後に消滅する一時的な機能喪失または性能低下であり、操作者が介在 することなく供試機器が正常な性能に自動復帰する。
- 操作者が介在する調整が必要な、一時的な機能喪失または性能低下。
- ハードウェアまたはソフトウェアの破壊による修復不可能な機能喪失または性能低下も しくはデータの喪失。

画面の構成

QIS2 の画面は、下記の5つのペインで構成されています。

NOTE

QIS2 の画面は、ディスプレイの文字サイズが OS のデフォルト設定のときに、正しく表示されるように設計されています。デフォルトよりも大きい文字サイズの設定では、画面上の文字が正しく収まらないことがあります。詳しくはディスプレイの文字サイズについてを参照してください。

ペイン	説明
規格選択	8 つのイミュニティ試験規格があります。 ・ IEC61000-4-11 ・ IEC61000-4-13 ・ IEC61000-4-14 ・ IEC61000-4-17 ・ IEC61000-4-27 ・ IEC61000-4-28 ・ IEC61000-4-29 ・ IEC61000-4-34
試験条件設定	各規格に対応した試験条件を設定します。波形図を使用して、設定 項目を分かりやすくしています。
状態表示	実行の経過をプログレスバーで表示する部分と、PCR-LE の動作状態 を表示する部分があります。
波形プレビュー	 設定した試験条件から作られた波形が表示されます。オシロスコープで確認しなくても出力波形を概ね把握できる機能です。目盛りはありません。多少出力波形と異なる部分もあります。 描画の都合により開始時に1サイクル正弦波が入ります。実際の出力は連続した正弦波となりますので、1サイクルとは限りません。 Seq タブを切り替えると、そのタブに対応する波形が描画されます。その都度最適なスケールが計算されるので、Seq タブ毎に縦軸スケールが異なることがあります。 三相運転の場合のみ、波形プレビューの左端に、各相の波形の表示/非表示を選択できるチェックボックスが現れます。
	「オプション」メニュー>「表示オプション」>「波形プレビュー表示エリアオプション」>「波形プログレスを表示」がチェックされている場合の試験実行時には、以下のような表示になります。 ・ Seq タブ内の波形図を実行順につなげた波形が表示されます。(Seq 全体の繰り返しを含まない試験波形のイメージ) ・ 長い試験では、電圧ディップや電圧変動の詳細な表現ができない場合があります。 ・ 波形の色は、設定した Seq タブの色に対応します。 ・ トリガマークは表示されません。 ・ Seq 全体の繰り返しは、波形プレビューの左端に、実行回数/設定回数で表示されます。 ・ 垂直のバーによって、現在実行されている Seq のポイントが示されます。
結果リスト	実行中の試験条件が Seq タブごとに行単位で表示されます。

QIS2

リミット値を設定する

PCR-LE が備えている電圧リミット、電流リミット、および保護機能(OVP と UVP)の設定値 を QIS2 から設定できます。

出力電圧設定値に制限を設けて、誤操作によって負荷に損傷を与えるのを防止したり、負荷 に流れる電流を制限したりする機能です。リミット値(制限値)を負荷の条件に合わせて、 事前に設定できます。

AC+DC モードでは、AC のリミット値と DC のリミット値を設定してください。

NOTE

- QIS2 は設定されたリミット値を記憶して次回の起動時に利用します。初めて QIS2 を起動したときは記憶されたリミット値がないので、 QIS2 は接続されている PCR-LE からリミット値を読み込みます。
- ・ 出力容量の異なる PCR-LE を接続した場合には、設定されているリミット値を適切な値に変更する必要があります。
- 1 「機器」メニューの「リミット値の設定」をクリックします。

「リミット値の設定」ダイアログボックスが表示されます。

接続されている PCR-LE の情報に合わせて、適切な結線方式タブが選択されます。

- う 各ボックスに値を入力します。
 - 現在の結線方式以外のタブを選択してリミット値を入力し、QIS2 に記憶させることもできます。
- **3** 「OK」ボタンをクリックします。 リミット値が記憶されます。

項目	説明
電圧リミット	範囲(下限と上限間)外の出力電圧は設定できなくなります。 下限値 ≦ 上限値になるように設定してください。 単相 3 線運転と三相運転では、相電圧での設定となります。
上限および下限	 入力範囲(AC): 0.0V から 305.0V 入力範囲(DC*1): -431.0V から 430.0V
電流リミット	出力電流の上限値を設定できます。下限値は設定できません。 出力電流の実効値で作動します。 出力電流が電流リミット値を超えたとき、出力はオフになり アラームが検出されます。
電流リミット	 入力範囲(AC): PCR-LE の定格電流(A) に対して ×0.1 から ×1.1 入力範囲(DC*1): PCR-LE の定格電流(A) に対して ×0.1 から ×1.1
+およびーピーク 電流リミット	• 入力範囲:PCR-LE の定格電流(A)に対して ×0.1 から ×4.4
出力オフまでの時間	出力電流が電流リミット値を超えたときに設定した時間経過後、出力はオフになります。 過負荷の状態や PCR-LE 内部の電流測定のタイミングによって、オフになるまでの時間が長くなる場合があります。電流測定の応答速度によって約 0.1s のディレイがあります。 ・ 入力範囲:0s から 10s
保護機能	保護機能が作動すると、出力はオフになりアラームが検出されます。 単相 3 線運転と三相運転では、相電圧での設定となります。
OVP	出力電圧が OVP 設定値を超えて約 1 秒間継続すると、出力過電圧保護(OVP)が作動します。 ・ 入力範囲(AC): 0.0V から 335.0V ・ 入力範囲(DC*1): -474.1V から 474.1V
UVP	出力電圧が UVP 設定値未満になって約 1 秒間継続すると、出力低電圧保護(UVP)が作動します。 ・ 入力範囲(AC): 0.0V から 335.0V ・ 入力範囲(DC ^{*1}): -474.1V から 474.1V

^{*1.} 単相 2 線と単相 3 線の結線方式タブを選択したときのみ

⚠注意

QIS2

・ 故障の原因となります。電流リミットまたは保護機能が作動した場合、アラームを解除する前に、アラームの原因をすべて取り除いてください。 アラームを解除するには、「機器」メニューの「アラームクリア」をクリックしてください。

9

試験条件を設定する

イミュニティ試験の試験条件を設定します。試験条件はファイルとして保存できるので、あらかじめ作成した試験条件を必要なときに呼び出して利用できます。試験条件ペインは、各試験規格ごとに設定しますが、ここでは共通する設定操作について説明します。

♠ 注意

・ QIS2 における電圧設定はすべて相電圧となります。設定電圧(相電圧)に対して、単相 3 線運転では線間で 2 倍、三相運転では線間で√3 倍の電圧が出力されます。

試験条件

項目	説明			
規格選択	####################################			
7,011,723,7	IEC61000-4-11 電圧ディップ、短時間停電、電圧変動			
	• IEC61000-4-13 高調波、次数間高調波			
	• IEC61000-4-14 電圧動揺			
	• IEC61000-4-17 DC 電源入力ポートのリップル			
	• IEC61000-4-27 不平衡			
	• IEC61000-4-28 電源周波数変動			
	IEC61000-4-29 DC 電源入力ポートの電圧ディップ、短時間停電、電圧変動			
	IEC61000-4-34 電圧ディップ、短時間停電、電圧変動			
Seq タブ ^{*1} (Seq 1 ~ Seq 10)	試験条件を Seq タブ(Seq $1 \sim$ Seq 10)に設定できます。 Seq タブ間でコピー、貼り付けの編集ができます。 各タブの色は、波形プレビューの波形色に対応しています。 色を変えるには、「オプション」メニューの「色の設定」を使用します。			
Seq チェックボックス (Seq 1 ~ Seq 10)	試験を実行する Seq タブをチェックボックスで選択します。 Seq 1 から順番に実行されます。チェックしない Seq タブはパ スされます。			
出力オフ チェックボックス	チェックすると、試験終了時に試験信号をオフにします。 (PCR-LE の出力をオフにします。)			
コンボボックス	数値を入力するコンボボックスはドロップダウン方式になっています。右端をクリックすると、代表的な値が選択できます。任意の数値を入力する場合は直接入力します(Enter キーで確定)。 入力された数値は過去8件まで保存されます。9件以上になった場合には、古いものから削除されます。保存している値と同じ値が入力されたり、ドロップダウンリストから選択されたりした場合は、新しい値として格上げされ順番が入れ替わります。 Seq タブ(Seq 1 ~ Seq 10)内にないコンボボックスはすべての Seq タブに共通です。電圧、周波数、および全体の繰り返しを設定します。電圧と周波数のコンボボックスは規格に応じて表示されます。			

項目	説明
トリガ出力 チェックボックス	トリガ出力の有無を選択します。選択した位置に赤色マーク ◆が表示され、トリガ信号が PCR-LE から出力されるタイミン グを表します。オシロスコープで試験信号を観測する場合に 使用します。トリガ信号出力については試験信号の観測を参 照してください。
タブ内の繰り返し コンボボックス	タブ内の繰り返し回数を設定します。入力範囲は 1 ~ 999 です。
全体の繰り返し コンボボックス	1 つ、または複数の Seq チェックボックスで選択された試験を 1 回として、繰り返し回数を設定します。入力範囲は 1 \sim 9999 です。
波形プレビュー ^{*2}	Seq タブ(Seq 1 ~ Seq 10)で選択した波形を表示します。垂直軸はオートスケールで、表示エリアの 90% 程度を最大として描画します。水平軸方向はツールバーの「拡大」、「縮小」ボタンにより拡大、縮小ができます。横スクロールバーで任意の場所に移動できます。 波形の色は、設定した Seq タブの色に対応します。
結果リスト	実行中の試験条件が Seq タブごとに行単位で表示されます。 試験が Seq タブを移行すると行が追加されます。自動スク ロールして追加された行が表示されます。表示項目は各規格に よって異なります。

- *1. IEC61000-4-13 における以下の試験項目では、Seq 1 でのみの設定となります。 周波数スイープ、3 の倍数でない奇数次高調波、3 の倍数の奇数次高調波、偶数次高調波、次数間高調波、マイスターカーブ
- *2. 波形プレビューでは、選択した Seq タブ(Seq $1 \sim Seq 10$)の試験開始点を画面の左端にしてに表示されます。例えば Seq $6 \leftarrow Seq 10$ を受けビューできます。水平軸方向を拡大したときは、横スクロールバーを使用して、目的の波形をプレビューできます。表示エリアには限りがありますので、設定によってはすべての波形を表示できない場合があります。全体の繰り返しは、波形プレビューには反映されません。

NOTE

Seq タブ内のコンボボックスで設定する値を安易に変更できないように設定できます。「オプション」メニュー>「表示オプション」>「設定値の変更時のメッセージ」>「Seq タブ内の設定値」にチェックを付けてください。設定値を変更する前に、確認メッセージが表示されます。

■時間の単位

試験条件設定で入力する時間の単位はすべて s (秒) です。分解能は 0.001s です。

ツールバー

項目	説明
開く	試験条件ファイルを選択するダイアログボックスが開きます。
上書き保存 (試験条件)	現在開いている試験条件ファイルを同じ名前で、試験条件設定を上 書き保存します。
実行	試験を開始します。 あらかじめ 「出力」ボタンで、PCR-LE の出力をオンにしてから「実 行」ボタンで試験を開始することもできます。
停止	試験を途中で停止します。PCR-LE の出力はオンのままですので注意 してください。出力もオフにする場合には、「非常停止」ボタンをク リックしてください。
出力	PCR-LE の出力のオンオフを切り替えます。出力がオフのときは「出力」ボタンをクリックすると出力がオンになります。 有効な Seq タブの初期電圧が出力されますので、出力オン状態からの試験実行が可能となります。
電圧レンジ	電圧レンジの切り替えボタンです。Low レンジと High レンジがあります。 Low レンジでは 152.5V までの出力が可能で、High レンジでは 305.0V までの出力が可能です。 ・ IEC61000-4-29(DC 電源入力ポートの電圧ディップ、短時間停電、電圧変動)では DC 電圧となります。Low レンジでは 215.5V までの出力が可能で、High レンジでは 431.0V までの出力が可能です。
拡大/縮小	波形プレビューの波形を水平軸方向に拡大します。「拡大」、「縮小」ボタンにより拡大、縮小ができます。 拡大が最大になると 「拡大」ボタンは淡色表示になります。縮小が最小になると 「縮小」ボタンは淡色表示になります。「拡大」、「縮小」ともに、9 段階に設定できます。
非常停止	試験を途中で停止し、PCR-LE の出力をオフにします。 ・ 緊急の場合は PCR-LE の POWER スイッチをオフにしてください。

プログレスバーと PCR-LE の動作状態表示

項目	説明
送信プログレスバー (左側)	実際に試験が開始されるまでの待ち時間(PCR-LE に試験条件が送信される時間)を緑色のバーグラフの長さで表示します。
実行プログレスバー (右側)	実際に試験が開始されてからの試験の進行状況を青色バーグラフ の長さで表示します。残り時間は右側に表示します。
PHASE 1P3W PHASE 3P	単相 2 線(1P2W)、単相 3 線(1P3W)または三相(3P)接続を 表示します。
OFF.	PCR-LE の出力のオン/オフ状態を表示します。
RANGE High	PCR-LE の電圧レンジの High または Low を表示します。
OUTMODE AC	PCR-LE の出力モードを表示します。
8	アラームが検出されたときに表示します。検出されないときは表 示しません。

PCR-LE の出力モード

「機器」メニューから PCR-LE の出力モードを選択します。

規格	単相出力 AC	$AC + DC^{*1}$	DC	_ 三相出力 AC ^{*2}
IEC61000-4-11	0	0	×	0
IEC61000-4-13	0	0	×	0
IEC61000-4-14	\circ	0	×	0
IEC61000-4-17	×	0	×	×
IEC61000-4-27	×	X	×	0
IEC61000-4-28	\circ	0	×	0
IEC61000-4-29	×	0	0	×
IEC61000-4-34	0	0	×	0

○: 実行可能 x: 実行不可

13

- *1 単相 3 線運転では AC+DC モードは選択できません。
- *2 三相運転では AC モードのみ選択可能です。

QIS2

試験条件をファイルとして保存する

■上書き保存

1 「上書き保存(試験条件)」ボタンをクリックします。

新規に保存する場合は、「名前を付けて保存」ダイアログボックスが表示されます。デフォルトのファイル名(無題.xml)では保存できません。

■ 名前を付けて保存

- **1** 「ファイル」メニューの「名前を付けて保存(試験条件)」をクリックします。 「名前を付けて保存」ダイアログボックスが表示されます。
- 保存場所とファイル名を指定します。
- **3** 「保存」ボタンをクリックします。 試験条件が保存されます。

試験条件を呼び出す

「開く」ボタンをクリックします。「ファイルを開く」ダイアログボックスが表示されます。現在の試験条件ファイルが保存されていない場合に、「オプション」メニュー>「表示オプション」>「試験条件ファイル」で、保存確認のメッセージを表示する/しない

- アび出すファイルを指定します。
- 3 「開く」をクリックします。 試験条件が設定されます。

を選択できます。

試験信号の観測

試験信号をオシロスコープで観測する場合は、下記に示すトリガ信号出力を使用します。 PCR-LE のトリガ信号出力は、各規格の試験条件で選択したトリガ信号が出力されます。

■PCR-LE のトリガ信号出力(SEQ TRIG OUT)

トリガ信号出力は、後面パネルの SEQ TRIG OUT 端子から数 10μ s 間、信号が出力されます。信号出力の HIGH はほぼ 5V、LOW はほぼ 0V です。トリガ信号出力と実際の出力の変化にはわずかに(100μ s 程度)時間差があります。トリガ信号出力は、シーケンス内容を変更した場合にも出力されることがあります。信号の極性は PCR-LE のコンフィグで設定します。

BNC コネクタは、PCR-LE の INPUT 端子台、OUTPUT 端子台とは絶縁されています。BNC コネクタにおける各信号のコモンラインは PCR-LE 内部で共有されています。このコモンラインは、LAN を除いたリモートインターフェースのコモンラインとも共有されています。従ってデスクトップ型パソコンでリモートコントロールする場合には、通信信号ラインが接地されるため BNC コネクタも接地電位になります。BNC コネクタに接続する信号ラインが接地に対して電位を持っている場合には、信号ラインに電流が流れて接続機器や PCR-LE の故障の原因になります。

■ ディップシミュレータのトリガ信号出力

ディップシミュレータ DSI1020/DSI3020 を使用した場合、後面にある TRIG OUT 端子 (BNC コネクタ) から出力されます。詳細はディップシミュレータの取扱説明書を参照してください。

表示オプション

「表示オプション」ダイアログボックスで表示に関するいろいろな設定ができます。 「オプション」メニューから「表示オプション」を選択してください。

項目説明

メッセージ表示オプション

設定値の変更時のメッ セージ チェックを付けた項目に対して、その項目の設定を変更するときにメッセージが表示されます。

・すぐに出力に影響する設定値: 試験条件設定ペインで PCR-LE の出力を変更するとき

• Seq タブ内の設定値:

Seq タブ内のコンボボックスで設定する値を変更するとき

全体の繰り返し:

実行される Seq 全体の繰り返しを変更するとき

メッセージ例

試験実行と出力オンの 警告メッセージ

チェックを付けた項目に対して、その項目が表す状態のとき にメッセージが表示されます。

- 実行開始時
- 出力オンのまま起動されたとき
- 出力オンのまま終了するとき
- 出力がオンされるとき

項目	説明
試験条件ファイル	
閉じるときのメッ セージ	試験条件ファイルを変更して未保存のまま QIS2 を終了する、または別の試験条件ファイルを開くときの動作を選択できます。 ・保存確認メッセージを表示:ファイルを保存する / しないを選択できます。 ・常に上書き:ファイルは上書きされますが、メッセージは表示されません。新規作成のファイルに対しては、名前を付けて保存できます。・常に保存しない:ファイルは更新されません。メッセージも表示されません。
読み込み時のメッ セージ	チェックを付けると、別の試験条件ファイルを開くときに メッセージが表示されます。
結果ファイルの保存	試験結果ファイルを保存するときの動作を選択できます。 ・保存確認メッセージを表示: ファイルを保存する / しないを選択できます。 ・常に保存しない: 保存の確認メッセージが表示されなくなります。
波形プレビュー表示エリ アオプション	
波形プログレスを表示	チェックを付けると、試験実行時のみ、Seq タブ内の波形図を実行順につなげた波形が、波形プレビューペインに表示されます。(Seq 全体の繰り返しを含まない試験波形のイメージ) ラインカーソルが試験の進行に合わせて移動します。

試験を実行する

実行の前に

注意

・QIS2 は、波形バンク *1 (0 \sim 63) を使用するため、波形バンク内の波形データは上書きされます。既に PCR-LE 本体のみで波形バンクを使用して、波形バンク内に必要な波形データが存在する場合は、アプリケーションソフトウェア Wave Bank Memory を使用して波形データをパソコンのハードディスクなどに保存することをお勧めします。

*1. PCR-LE では出力波形データを内部のメモリーに格納しています。その波形データを格納する、メモリーの 1 波形分領域のことを波形バンクといい、 $0 \sim 63$ のバンクがあります。QIS2 はすべての波形バンク($0 \sim 63$)を使用します。

波形バンク 0 には、PCR-LE の基準電圧波形となる正弦波データが格納されています。工場出荷時の状態では、すべての波形バンクに波形バンク 0 と同じ波形(正弦波)が入っています。

試験条件によって、QIS2 は波形バンク 0 を正弦波ではないデータに書き換えることがあります。波形バンク 0 が書き換えられても QIS2 から PCR-LE を使用している間は問題ありません。もし試験終了後すぐに PCR-LE を単体で使用する場合には、波形バンク 0 を正弦波データに戻すために、PCR-LE の POWER スイッチを一度オフにしてください。

電源オン・オフ

⚠注意

• エラーが発生したり故障の原因になります。下記の手順にしたがって、電源オン・オフを行ってください。

■ 電源オンの手順

- ディップシミュレータの電源をオンにする。
- **PCR-LE の電源をオンにする。** ディップシミュレータを使用する場合は、ディップシミュレータの設定を切り替える ために、**PCR-LE** の出力をオフにする必要があります。
- **3** QIS2 を起動する。

ディップシミュレータを使用している場合は、PCR-LEの出力オフで試験を実行した場合でも、 自動的にオンになります。

■ 電源オフの手順

- **1** QIS2 を終了する。
- 🤰 PCR-LE の電源をオフにする。
- ディップシミュレータの電源をオフにする。

PCR-LE の出力オン・オフ

ツールバーの「出力」ボタンをクリックすると、PCR-LE の出力がオンの状態で試験を開始できます。出力をオフにするには、再度「出力」ボタンをクリックします。

NOTE

・出力がオンの状態では、試験条件ペインで PCR-LE の出力電圧や周波数を変更すると、すぐに出力に反映されます。出力を安易に変更できないように設定するには、「オプション」メニュー>「表示オプション」>「設定値の変更時のメッセージ」>「すぐに出力に影響する設定値」にチェックを付けてください。電圧や周波数を変更する前に、確認メッセージが表示されます。

試験実行と出力オンの警告メッセージ

「オプション」メニューの「表示オプション」ダイアログボックスで、次の状態(複数選択可)のときに警告メッセージを表示するように設定できます。

- 実行開始時
- 出力オンのまま起動されたとき
- 出力オンのまま終了するとき
- 出力がオンされるとき

実行

試験は、チェックボックスで選択した Seq タブを若い番号から順番に実行します。選択しない Seq タブはパスされます。

左図の例では、Seq 1 から Seq 7 まで順番に実行されます。「全体の繰り返し」は 1 回です。したがって Seq 7 まで実行したら終了します。

「出力オフ」のチェックボックスがチェックされていないので、終 了時の PCR-LE 出力はオンのままです。

NOTE

・IEC61000-4-13 における以下の試験では、波形バンクを書き換えながら実行します。 周波数スイープ、3 の倍数でない奇数次高調波、3 の倍数の奇数次高調波、偶数次高調 波、次数間高調波、マイスターカーブ

- 波形バンクの書き換えには 2 秒弱かかります。波形バンクの書き換え待ちは、整数次高調波の実行タイミングでおこないます。最大で 64 バンクを書き換えるので、整数次高調波を出力しながら、最大 2 分程度の待ち時間が入ります。
- Seq 全体の繰り返し回数を安易に変更できないように設定するには、「オプション」メニュー>「表示オプション」>「設定値の変更時のメッセージ」>「全体の繰り返し」にチェックを付けてください。繰り返し回数を変更する前に、確認メッセージが表示されます。
- 1 試験条件を設定します。
- ツールバーの「実行」ボタンをクリックします。

最初に PCR-LE への試験条件の送信が開始されます。送信プログレスバーが進行状況を示します。

送信が完了すると、試験が開始されます。実行プログレスバーが進行状況を示します。 残り時間は実行プログレスバーの右側に表示されます。

「表示オプション」>「波形プレビュー表示エリアオプション」>「波形プログレスを表示」がチェックされている場合とチェックされていない場合で、波形プレビューペインの表示が変わります。

「波形プログレスを表示」がチェックされている場合

停止

QIS2

1 ツールバーの「停止」ボタンをクリックします。

異常時の対処

供試機器に異常が発生した場合は、QIS2 およびハードウェアを操作して、試験を中断してください。より確実に供試機器を保護するためには、ハードウェアを操作することをお勧めします。

●QIS2 の操作

ファンクションキーの F9 またはツールバーの「非常停止」ボタンをクリックすると試験は中断され、PCR-LE の出力はオフになります。

● ハードウェアの操作

PCR-LE の POWER スイッチをオフにしてください。

21

結果リスト

実行中の試験条件が、Seq タブや重畳した次数ごとに行単位で表示されます。試験が Seq タブや重畳した次数を移行すると行が追加されます。自動スクロールして追加された行が表示されます。表示項目は各規格によって異なります。

••••••

代表的な試験例を示します。表示される数値は、無関係の場合空欄または 0 となります。No は試験条件毎に番号が付けられます。試験条件が新しくなる度に増加していきます。Seq タブ内における繰り返し回数は表示されません。

● 電圧変動、電圧ディップ、短時間停電の例

No.	全体の繰り返し	Seq	試験項目	通常電圧 [V]	レベル [%]
1	1	1	電圧変動	230.0	40.0
2	1	2	電圧ディップ	230.0	70.0
3	1	3	短時間停電	230.0	0.0

位相角 [°]	下降時間 [s]	低下時間 (cy: サイクル)	上昇時間 [s]	インターバル [s]
	2.000	1.000s	2.000	10.000
0		1.0cy		10.000
0		0.5cy		10.000

試験結果を保存する

NOTE

試験結果を保存する必要がない場合には、「オプション」メニュー>「表示オプション」>「結果ファイルの保存」>「常に保存しない」を選択してください。保存の確認メッセージが表示されなくなります。

■ 試験結果ファイルの設定

「ファイル」メニューの「試験結果ファイルのオプション」をクリックします。 「結果ファイルのオプション」ダイアログボックスが表示されます。

- 2 区切り文字、文字コード、拡張子を指定します。 日本語版の Excel はユニコードに対応していないバージョンもあります。保存された ファイルを日本語環境で使用する場合は、「日本語(Shift-JIS)」を選択してください。
- 「OK」ボタンをクリックします。
- 名前を付けて保存
- 「ファイル」メニューの「試験結果の保存」をクリックします。 「名前を付けて保存」ダイアログボックスが表示されます。
- 保存場所とファイル名を指定します。
- **3** 「保存」ボタンをクリックします。 試験結果が保存されます。

IEC61000-4-11

試験の概要

電圧ディップ、短時間停電、および電圧変動イミュニティ試験とは、電源電圧の急激な低下、 あるいは緩やかな低下に対して、機器のイミュニティを試験します。

1 相当たりの入力電流によって 2 つの規格に分かれます。IEC61000-4-11 は 16A 以下、IEC61000-4-34 は 16A 超です。QIS2 では、試験条件において 1 相当たりの入力電流による区別は行っていません。試験結果ファイルは規格毎に作成されます。

NOTE

IEC61000-4-11 の試験では、ディップシミュレータの使用をお勧めします。

・ 試験用電圧発生器の電圧立上がり・立下がり時間に関する規格性能($1\mu s \sim 5\mu s$)を満足します。ディップシミュレータを使用しない場合の性能は約 $30\mu s$ となります。

電圧ディップおよび短時間停電

画面上に準備されている数値を選択または入力範囲内の数値を入力します。数値を入力した 場合は Enter キーで確定してください。

項目	説明
Seq タブ	試験条件をそれぞれの Seq タブ(Seq 1 \sim Seq 10)に設定できます。
試験項目	電圧ディップ、または短時間停電を選択します。
相の選択(三相運転 の場合のみ) ^{*1}	試験条件を設定する相(相電圧または線間電圧)を選択します。相電圧/線間電圧の選択は、すべての Seq タブに反映されます。ディップシミュレータを使用する場合は、Seq タブごとに設定でき
	ます。 短時間停電試験を選択した場合は、全相が同時に短時間停電となり ます。
	電圧ディップ試験で相電圧を選択した場合 • Ua、Ub および Uc から電圧ディップさせる相を選択します。(複数選択可) この設定をすべての Seq タブに反映させるには、「コピー」ボタンをクリックします。
	電圧ディップ試験で線間電圧を選択した場合 Ua-Ub、Ub-Uc および Uc-Ua から電圧ディップさせる線間を選択します。(複数選択不可) この設定をすべての Seq タブに反映させるには、「コピー」ボタンをクリックします。

項目	説明
UT(相電圧)[Vrms]	の定格電圧を入力します。
	三相運転で相の選択を線間電圧に設定した場合、または単相 3 線運転の場合には、入力された相電圧値を線間電圧値に換算した値が、入力ボックスの下に青字で表示されます。
レベル(相/線間) [%]	電圧ディップでは UT に対する低下率を入力します。短時間停電では 0% に固定されます (入力はなし)。 ・ 入力範囲 (電圧ディップ): 0.0% から 200.0% (線間電圧の設定では 0.0% から 100.0%) ・ 入力範囲 (ディップシミュレータを使用): 0.0%、40.0%、70.0%、80.0% のいずれかを選択します。
開始位相角 [°]	電圧ディップまたは短時間停電の開始位相角を入力します。
ディップ/停電 [サ イクル]	電圧ディップまたは短時間停電の周期数を入力します。入力された 周期数を時間に換算した値が、入力ボックスの下に青字で表示され ます。
インターバル [s]	ディップシミュレータは -0.5 周期、0.5 周期、1 周期から 300 周期まで設定できます。 復帰電圧(UT)になってから、次の電圧低下までの間隔を入力します。最後のインターバルでは、次の Seq タブへの移行時間になりま
	す。
タブ内の繰り返し	Seq タブ内における繰り返し回数を入力します。 ・ 入力範囲 ^{*2} :1 回から 999 回
トリガ出力	トリガ信号出力を選択します。チェックボックスで選択した位置に 赤色マーク ◆ が表示されます。波形プレビューにも表示されます。
Seq チェックボック	試験を実行する Seq タブをチェックボックスで選択します。 Seq 1 か
ス (Seq 1 ~ Seq 10)	
出力オフ	チェックすると、試験終了時に試験信号をオフにします。(PCR-LE の出力をオフにします。)
周波数 [Hz]	供試機器の定格周波数を入力します。 入力範囲:45.00Hz から 65.00Hz 入力範囲(ディップシミュレータを使用): 50.00Hz、60.00Hz、のいずれかを選択します。
全体の繰り返し	選択した Seq 1 ~ Seq 10 全体の繰り返し回数を入力します。 ・ 入力範囲:1 回から 9999 回

*1. イミュニティテスタ IT01-PCR-L を使用する場合は、接続を変更する必要があります。 相電圧:各相にイミュニティテスタを接続します。 線間電圧:各線間にイミュニティテスタを接続します。 *2. イミュニティテスタ IT01-PCR-L を使用する場合は、3 回から 999 回(3 の倍数のみ)

25 QIS2

電圧変動

画面上に準備されている数値を選択または入力範囲内の数値を入力します。数値を入力した 場合は Enter キーで確定してください。

•••••••

項目	説明
Seq タブ	電圧ディップおよび短時間停電と同じです。
試験項目	電圧変動を選択します。
相の選択(三相運転の場合のみ)	試験条件を設定する相(相電圧または線間電圧)を選択します。相電圧/線間電圧の選択は、すべての Seq タブに反映されます。ディップシミュレータを使用する場合は、Seq タブごとに設定できます。
	相電圧を選択した場合 ・ Ua、Ub および Uc から電圧変動させる相を選択します。(複数選択可) この設定をすべての Seq タブに反映させるには、「コピー」ボタンをクリックします。
	線間電圧を選択した場合 ・ Ua-Ub、Ub-Uc および Uc-Ua から電圧変動させる線間を選択します。(複数選択不可) この設定をすべての Seq タブに反映させるには、「コピー」ボタンをクリックします。
UT(相電圧)[Vrms]	
レベル(相/線間) [%]	電圧ディップおよび短時間停電と同じです。
下降時間 [s]	初期の電圧 (UT) から低下電圧まで減少させる時間を入力します。 ・ 入力範囲: 0.0s から 360000.000s
低下時間 [s]	低下電圧の継続時間を入力します。 ・ 入力範囲:0.01s から 360000.000s
上昇時間 [s]	低下電圧から初期の電圧と同じ値(UT)に復帰するまでの時間を入力します。 ・ 入力範囲: 0.01s から 360000.000s
インターバル [s]	
タブ内の繰り返し	- 電圧ディップおよび短時間停電 と同じです。
トリガ出力	-
Seq \mathcal{F} x \mathcal{F}	試験を実行する Seq タブをチェックボックスで選択します。Seq 1 から順番に実行されます。チェックしない Seq タブはパスされます。
出力オフ	
周波数 [Hz]	- 電圧ディップおよび短時間停電 と同じです。
全体の繰り返し	-

NOTE

試験開始時は同じ位相で始まるように位相を合わせていますが、時間設定によっては、次の Seq や繰り返しで開始位相が異なることがあります。

IEC61000-4-13

試験の概要

高調波および次数間高調波イミュニティ試験とは、電源電圧波形のひずみに対して、機器のイミュニティを試験します。試験項目を下記に示します。

- ・ フラットカーブ
- オーバースイング
- 周波数スイープ
- 3の倍数でない奇数次高調波
- ・ 3の倍数の奇数次高調波
- 偶数次高調波
- 次数間高調波
- マイスターカーブ

■ 試験順序

規格試験では各試験を適用するに当たって、推奨する試験順序がフローチャートで示されています。QIS2 では、予備試験等の汎用性を考慮して、この順番にしたがった方法を採用していません。各試験項目は独立して実施するようになっています。

■ 電磁環境のクラス

QIS2 ではクラスを指定または設定の条件にしていません。お客様が判断したクラスで試験条件を設定してください。

■三相運転

試験条件は、全てU相について設定します。試験信号はU相を基準として各相同時に変化します。

27

フラットカーブ

画面上に準備されている数値を選択または入力範囲内の数値を入力します。数値を入力した 場合は Enter キーで確定してください。

項目	説明
Seq タブ	試験条件をそれぞれの Seq タブ(Seq 1 \sim Seq 10)に設定できます。
試験項目	フラットカーブを選択します。
×U1 × Ky × √2 (フラット電圧)	U1 のピーク値U1 \times Ky \times $\sqrt{2}$ に対するクリップ部の比率を入力します。クリップしない場合は 1 です。試験レベルを変化させても Ky 値は自動的に設定され、実効値は U1 の値に維持されます。 ・入力範囲:0.40 から 0.99
継続時間 [s]	フラットカーブ波形の継続時間を入力します。 入力範囲: 0.020s から 360000.000s 波形の切り替わりタイミングは基本波の位相角 0°です。つまり現在の波形は、設定時間の終了時に切り替わるのではなく、次に来る基本波の位相角 0°で切り替わります。
インターバル [s]	復帰電圧(U1)になってから、次のクリップ波形までの間隔を入力します。最後のインターバルでは次の Seq タブへの移行時間になります。 ・ 入力範囲: 0.020s から 360000.000s ・ 波形の切り替わりタイミングは継続時間の動作と同じです。
タブ内の繰り返し	Seq タブ内における繰り返し回数を入力します。 ・ 入力範囲:1 回から 999 回
トリガ出力	トリガ信号出力を選択します。チェックボックスで選択した位置に 赤色マーク ◆ が表示されます。波形プレビューにも表示されます。
Seq チェックボック ス(Seq 1 ~ Seq 10)	試験を実行する Seq タブをチェックボックスで選択します。Seq 1 から順番に実行されます。チェックしない Seq タブはパスされます。
出力オフ	チェックすると、試験終了時に試験信号をオフにします。(PCR-LEの出力をオフにします。)
U1[V]	初期の電圧(復帰時の電圧も同じ値)を入力します。通常供試機器の定格電圧を入力します。 ・入力範囲: 50.0V から 305.0V ・電圧レンジを適切に選択する必要があります。電圧レンジはツールバーまたは「機器」メニューで設定します。
周波数 [Hz]	供試機器の定格周波数を入力します。 ・ 入力範囲:45.00Hz から 65.00Hz
全体の繰り返し	選択した Seq 1 ~ Seq 10 全体の繰り返し回数を入力します。 ・ 入力範囲:1 回から 9999 回

オーバースイング

画面上に準備されている数値を選択または入力範囲内の数値を入力します。数値を入力した場合は Enter キーで確定してください。

項目	説明
Seq タブ	フラットカーブ と同じです。
試験項目	オーバースイングを選択します。
レベル [%]	基本波に重畳する、3次および5次高調波の比率(U1rmsに対する)
	を入力します。
	入力範囲: 0.0% から 100.0%
	・ 試験レベルを変化させても実効値は U1 の値に維持されます。
位相角 [°]	基本波に重畳する、3次および5次高調波の位相角を入力します。
	• 入力範囲:0°から360°
継続時間 [s]	
インターバル [s]	-
タブ内の繰り返し	-
トリガ出力	<u>-</u>
Seq チェックボック	フラットカーブと同じです。
ス(Seq 1 ~ Seq 10)	
出力オフ	-
U1[V]	_
周波数 [Hz]	
全体の繰り返し	-

QIS2 **29**

周波数スイープ

画面上に準備されている数値を選択または入力範囲内の数値を入力します。数値を入力した 場合は Enter キーで確定してください。

••••••

項目	説明
Seq タブ	試験条件は Seq 1 のみに設定できます。
試験項目	周波数スイープを選択します。
Δf (高調波ステップ)	基本波に重畳する、高調波または次数間高調波スイープのステップ (差分の次数で設定)を入力します。スイーブは、低い次数から高い次数に向かって進みます。 - 入力範囲: 0.1 から 1.0
レベル [%]	基本波に重畳する、高調波の比率(基本波に対する)を入力します。 ・入力範囲: 0.0% から 100.0%
継続時間 [s/block]	基本波に重畳する、高調波または次数間高調波スイープの同一周波数レンジ*1での継続時間を入力します。 入力範囲:300.000sから360000.000s 波形の切り替わりタイミングは基本波の位相角0°です。つまり現在の波形は、設定時間の終了時に切り替わるのではなく、次に来る基本波の位相角0°で切り替わります。
Trg(トリガ出力)	トリガ信号出力を選択します。整数次高調波の重畳開始時にトリガ信号が出力されます。波形プレビューでは、チェックボックスで選択した位置に赤色マーク ◆ が表示されます。
Seq \mathcal{F} \pm \mathbb{V} \mathcal{F} \mathbb{V} \mathcal{F} F	Seq 1 のみ選択されます。Seq 1 以外は淡色表示になります。
出力オフ	チェックすると、試験終了時に試験信号をオフにします。(PCR-LEの出力をオフにします。)
U1[V]	初期の電圧(復帰時の電圧も同じ値)を入力します。通常供試機器の定格電圧を入力します。 ・ 入力範囲:50.0V から 305.0V ・ 電圧レンジを適切に選択する必要があります。電圧レンジはツールバーまたは「機器」メニューで設定します。
周波数 [Hz]	供試機器の定格周波数を入力します。 ・ 入力範囲:45.00Hz から 65.00Hz

奇数次高調波

QIS2

画面上に準備されている数値を選択または入力範囲内の数値を入力します。数値を入力した 場合は Enter キーで確定してください。

項目	説明
Seq タブ	周波数スイープと同じです。
試験項目	3 の倍数でない奇数次高調波、または 3 の倍数の奇数次高調波を選択します。
次数	基本波に重畳する、高調波の次数を入力します。個別高調波の変化は、表の最上位行から下に向かって進みます。 - 入力範囲(3 の倍数でない奇数次高調波): 5,5,7,7,11,13,17,19,23,25,29,31,35,37 の固定値が設定してあります。変更できません。 - 入力範囲(3 の倍数の奇数次高調波): 3,3,9,9,15,21,27,33,39 の固定値が設定してあります。変更できません。
レベル [%]	基本波に重畳する、高調波の比率(基本波に対する)を入力します。 ・ 入力範囲: 0.0% から 100.0%
位相角 [°]	基本波に重畳する、高調波の位相角を入力します。 ・ 入力範囲:0° から 360°
持続時間 [s]	基本波に重畳する、高調波の持続時間を入力します。 入力範囲: 0.000s から 360000.000s 波形の切り替わりタイミングは基本波の位相角 0°です。つまり現在の波形は、設定時間の終了時に切り替わるのではなく、次に来る基本波の位相角 0°で切り替わります。
インターバル	次の高調波を重畳するまでの休み時間を入力します。この間は基本 波のみになります。
Trg(トリガ出力)	トリガ信号出力を選択します。チェックボックスで選択した高調波 の重畳開始時にトリガ信号が出力されます。波形プレビューでは、 チェックボックスで選択した位置に赤色マーク ◆ が表示されます。
Seq チェックボック ス(Seq 1 \sim Seq 10)	_
出力オフ	- - 周波数スイープ と同じです。
U1[V]	
周波数 [Hz]	_
全体の繰り返し	

31

偶数次高調波

画面上に準備されている数値を選択または入力範囲内の数値を入力します。数値を入力した 場合は Enter キーで確定してください。

項目	説明
Seq タブ	周波数スイープと同じです。
試験項目	偶数次高調波を選択します。
次数	基本波に重畳する、高調波の次数を入力します。個別高調波の変化は、表の最上位行から下に向かって進みます。 ・ 入力範囲: 2 から 40 の偶数
レベル [%]	
位相角 [°]	-
持続時間 [s]	奇数次高調波と同じです。
インターバル	
Trg(トリガ出力)	
Seq チェックボック ス(Seq 1 ~ Seq 10)	
出力オフ	
U1[V]	- 周波数スイープと同じです。
周波数 [Hz]	-
全体の繰り返し	-

次数間高調波

画面上に準備されている数値を選択または入力範囲内の数値を入力します。数値を入力した 場合は Enter キーで確定してください。

項目	説明
Seq タブ	周波数スイープと同じです。
試験項目	次数間高調波を選択します。
Δf(高調波ステッ プ)	周波数スイープと同じです。
レベル [%]	基本波に重畳する、高調波の比率(基本波に対する)を入力します。 ・入力範囲:0.0% から 100.0%
継続時間 [s/step]	基本波に重畳する、次数間高調波の継続時間(1 ステップ当たり) を入力します。 ・ 入力範囲:5.000s から 360000.000s
インターバル [s/step]	次の次数間高調波を重畳するまでの休み時間(次のステップまでの 休み時間)を入力します。この間は基本波のみになります。 ・入力範囲: 1.000s から 360000.000s

項目	説明
Trg(トリガ出力)	
Seq チェックボック ス(Seq 1 ~ Seq 10)	- - 周波数スイープと同じです。
出力オフ	
U1[V]	-
周波数 [Hz]	-

マイスターカーブ

画面上に準備されている数値を選択または入力範囲内の数値を入力します。数値を入力した 場合は Enter キーで確定してください。

項目	説明
Seq タブ	周波数スイープと同じです。
試験項目	マイスターカーブを選択します。
Δf(高調波ステッ プ)	周波数スイープと同じです。
レベル [%]	基本波に重畳する、高調波の比率(基本波に対する)を入力します。 $0.0 \sim 99.9$ の値を設定した場合は、その値がレベル $\%$ となります。 $100 \sim 5000$ の値を設定した場合は、入力値 $/$ f となります。
継続時間 [s/block]	基本波に重畳する、高調波または次数間高調波スイープの同一周波 数レンジ ^{*1} での継続時間を入力します。 ・入力範囲:300.000s から 360000.000s
Trg(トリガ出力)	
Seq チェックボック ス(Seq 1 \sim Seq 10)	- 国連券フィープレロドネオ
出力オフ	- 周波数スイープと同じです。
U1[V]	-
周波数 [Hz]	_

^{*1.} 周波数レンジは「重畳する次数」の項目にある 4 レンジ(0.33 \sim 2.0、2.0 \sim 10.0、10.0 \sim 20.0、20.0 \sim 40.0)となります。 Δf が 0.1 の場合、0.33 の次は 0.4 となります。

QIS2 33

IEC61000-4-14

試験の概要

電圧動揺イミュニティ試験とは、電源電圧の動揺に対して、機器のイミュニティを試験します。

■ 電磁環境のクラス

QIS2 ではクラスを指定または設定の条件にしていません。お客様が判断したクラスで試験条件を設定してください。

■三相運転

試験条件は、全てU相について設定します。試験信号はU相を基準として各相同時に変化します。

電圧動揺

画面上に準備されている数値を選択または入力範囲内の数値を入力します。数値を入力した 場合は Enter キーで確定してください。

項目	説明
Seq タブ	試験条件をそれぞれの Seq タブ(Seq 1 \sim Seq 10)に設定できます。
試験項目	電圧動揺を選択します。
Un[%]	電圧動揺の中心値を入力します。供試機器の定格電圧に対する比率を入力します。 ・ 入力範囲:50.0% から 150.0% ・ 試験実行に使用する Seq タブ間の Un 設定値を確認してください。 Seq タブ間で Un 設定値が異なる場合、実行 Seq タブの選択によっては、意図しない電圧変化となります。
デルタ 1/2/3[%]	電圧動揺の範囲を入力します。供試機器の定格電圧に対する比率を 入力します。 ・ 入力範囲:-50.0% から 50.0% ・ 継続時間は 2s(固定)です。
繰り返し間隔 1/2/3[s]	電圧動揺の繰り返し間隔を入力します。秒単位または時間:分:秒で入力できます。 ・入力範囲:3.000s から 360000.000s
タブ内の繰り返し	Seq タブ内における繰り返し回数を入力します。 ・ 入力範囲:1 回から 999 回
トリガ出力	トリガ信号出力を選択します。チェックボックスで選択した位置に 赤色マーク ◆ が表示されます。波形プレビューにも表示されます。
Seq \mathcal{F} \pm \mathbb{V} \mathcal{F} \mathbb{V} \mathcal{F} F	試験を実行する Seq タブをチェックボックスで選択します。Seq 1 から順番に実行されます。チェックしない Seq タブはパスされます。
出力オフ	チェックすると、試験終了時に試験信号をオフにします。(PCR-LEの出力をオフにします。)

項目	説明
Un[V]	供試機器の定格電圧を入力します。 入力範囲:0.0V から 300.0V 電圧レンジを適切に選択する必要があります。電圧レンジはツールバーまたは「機器」メニューで設定します。
周波数 [Hz]	供試機器の定格周波数を入力します。 ・ 入力範囲:45.00Hz から 65.00Hz
全体の繰り返し	選択した Seq 1 ~ Seq 10 全体の繰り返し回数を入力します。 ・入力範囲:1 回から 9999 回

インターバル

画面上に準備されている数値を選択または入力範囲内の数値を入力します。数値を入力した 場合は Enter キーで確定してください。

項目	説明
Seq タブ	電圧変動と同じです。
試験項目	インターバルを選択します。
Un×[%] (インターバル 1)	電圧動揺の中心値を入力します。供試機器の定格電圧に対する比率を入力します。通常は、前の Seq タブの Un% と同じ値にします。 ・ 入力範囲: 1.0% から 150.0% ・ 試験実行に使用する Seq タブ間の Un 設定値を確認してください。 Seq タブ間で Un 設定値が異なる場合、実行 Seq タブの選択によっては、意図しない電圧変化となります。
Un×[%] (インターバル 2)	電圧動揺の中心値を入力します。供試機器の定格電圧に対する比率を入力します。通常は、次の Seq タブの Un% と同じ値にします。 ・ 入力範囲:Un×[%] (インターバル 1)と同じです。
インターバル 1/2[s]	インターバルの繰り返し間隔を入力します。 ・ 入力範囲:0.0010s から 360000.0000s
タブ内の繰り返し	
トリガ出力	
Seq チェックボック ス(Seq 1 ~ Seq 10)	
出力オフ	・電圧動揺と同じです。 - - -
Un[V]	
周波数 [Hz]	
全体の繰り返し	

QIS2 35

試験条件の作成例

ここでは、下記のような連続した電圧変動を発生させる試験条件の作成手順を示します。

•••••

連続した電圧変動の例

1 Seq 1 ~ Seq 7 をチェックします。

Seq 1 タブでは、次のように設定します。

Seq 2 タブでは、次のように設定します。

▲ Seq 3 タブでは、次のように設定します。

Seq 4 タブでは、次のように設定します。

QIS2 37

← Seq 5 タブでは、次のように設定します。

7 Seq 6 タブでは、次のように設定します。

♀ Seq 7 タブでは、次のように設定します。

試験の概要

リップルイミュニティ試験とは、DC 電源入力ポートのリップルに対して、機器のイミュニティを試験します。

三相運転でこの試験は選択できません。

■ 電磁環境のクラス

QIS2 ではクラスを指定または設定の条件にしていません。お客様が判断したクラスで試験条件を設定してください。

単相および三相整流回路のリップル

	-V
項目	説明
Seq タブ	試験条件をそれぞれの Seq タブ(Seq 1 \sim Seq 10)に設定できます。
試験項目	該当する整流回路を選択します。
Udc[V]	公称 DC 電圧を入力します。
	• 入力範囲:10.0V から 360.0V
レベル [%]	公称 DC 電圧に対するリップル pp(peak-to-peak)値の比率(基本
	波に対する)を入力します。
	・ 入力範囲:0.0% から 20.0%
継続時間 [s]	継続時間を入力します。
	・ 入力範囲:1.000s から 360000.000s
インターバル [s]	継続時間終了から、次の開始までの間隔を入力します。最後のイン
	ターバルでは次の Seq タブへの移行時間になります。
-	・ 入力範囲:0.000s から 360000.000s
タブ内の繰り返し	Seq タブ内における繰り返し回数を入力します。
	・ 入力範囲:1 回から 999 回
トリガ出力	トリガ信号出力を選択します。チェックボックスで選択した位置に
	赤色マーク★が表示されます。波形プレビューにも表示されます。
Seq チェックボック	·
ス(Seq 1 \sim Seq 10)	ら順番に実行されます。チェックしない Seq タブはパスされます。
出力オフ	チェックすると、試験終了時に試験信号をオフにします。(PCR-LE
	の出力をオフにします。)
周波数 [Hz]	供試機器の定格周波数を入力します。
	• 入力範囲:45.00Hz から 65.00Hz
全体の繰り返し	選択した Seq 1 ~ Seq 10 全体の繰り返し回数を入力します。
	・ 入力範囲:1 回から 9999 回
「機器」メニュー	「AC+DC モード」を選択します。
	・本試験は、「AC モード」または「DC モード」では実行できませ
	h_{\circ}

試験の概要

不平衡イミュニティ試験とは、三相不平衡に対して、機器のイミュニティを試験するものです。

■ 電磁環境のクラス

QIS2 ではクラスを指定または設定の条件にしていません。お客様が判断したクラスで試験条件を設定してください。

不平衡

項目	説明
Seq タブ	試験条件をそれぞれの Seq タブ(Seq 1 \sim Seq 10)に設定できます。
基準位相	Ua、Ub、Uc、および位相角の設定の基準となる位相を選択します。 基準位相によって、Ua、Ub、Uc、および位相角の設定も変わります ので、最初に基準位相を選択してください。
Ua[%]	供試機器の定格電圧に対する比率を入力します。基準位相の選択に
Ub[%]	⁻ よって表示される位置が変わります。 - ・ 入力範囲:0.0% から 150.0%
Uc[%]	- • 人人/J單位 - 0.070 万十分 130.070
位相角 ab/bc/ca [°]	位相角を入力します。基準位相の選択によって表示されるサフィックス(位相間)が変わります。 ab:Ua-Ub 間の位相角 bc:Ub-Uc 間の位相角 ca:Uc-Ua 間の位相角 ・入力範囲:0°から 359°
位相角 ac /ba/cb [°]	位相角を入力します。基準位相の選択によって表示されるサフィックス(位相間)が変わります。 ac: Ua-Uc 間の位相角 ba: Ub-Ua 間の位相角 cb: Uc-Ub 間の位相角 ・ 入力範囲:0° から 359°
継続時間 [s]	継続時間を入力します。 ・ 入力範囲:1.000s から 360000.000s
インターバル [s]	繰り返し間隔を入力します。この期間では各相の電圧を 100%、位相 角 ab を 120°、ac を 240°に固定します。 ・入力範囲:0.000s から 360000.000s
タブ内の繰り返し	Seq タブ内における繰り返し回数を入力します。 ・ 入力範囲:1 回から 999 回
Seq チェックボック ス(Seq 1 ~ Seq 10)	·
出力オフ	チェックすると、試験終了時に試験信号をオフにします。(PCR-LEの出力をオフにします。)
UN[V]	供試機器の定格電圧を入力します。 入力範囲: 50.0V から 305.0V 電圧レンジを適切に選択する必要があります。電圧レンジはツールバーまたは「機器」メニューで設定します。
周波数 [Hz]	供試機器の定格周波数を入力します。 ・ 入力範囲:45.00W から 65.00HzHz
全体の繰り返し	選択した Seq 1 ~ Seq 10 全体の繰り返し回数を入力します。 ・ 入力範囲:1 回から 9999 回

試験の概要

電源周波数変動イミュニティ試験とは、電源周波数の変動に対して、機器のイミュニティを試験します。

■ 電磁環境のクラス

QIS2 ではクラスを指定または設定の条件にしていません。お客様が判断したクラスで試験条件を設定してください。

■三相運転

試験条件は、全てU相について設定します。試験信号はU相を基準として各相同時に変化します。

電源周波数変動

項目	説明
Seq タブ	試験条件をそれぞれの Seq タブ(Seq 1 \sim Seq 10)に設定できます。
周波数 1(f1)[Hz]	供試機器の電源周波数を入力します。 ・ 入力範囲:45.00Hz から 65.00Hz
周波数 1(f1)の 継続時間 [s]	周波数 1(f1)の継続時間を入力します。 ・入力範囲:0.001s から 360000.000s
移行時間 1[s]	移行時間を入力します。 ・ 入力範囲:0.001s から 360000.000s
f1+Δf[%]	周波数変動比を入力します ・ 入力範囲:-50.0% から 50.0%
f1+Δf の継続時間 [s]	周波数 1 (f1) の 継続時間 [s] と同じです。
移行時間 2[s]	移行時間(復帰)を入力します。移行時間 1[s] と同じです。
周波数 2(f2)[Hz]	周波数 1 (f1) [Hz] と同じです。
周波数 2(f2)の 継続時間 [s]	周波数 1(f1)の 継続時間 [s] と同じです。
タブ内の繰り返し	Seq タブ内における繰り返し回数を入力します。
	・ 入力範囲:1 回から 999 回
トリガ出力	トリガ信号出力を選択します。チェックボックスで選択した位置に 赤色マーク→が表示されます。波形プレビューにも表示されます。 位相角に関係なく設定された時間でトリガが出力されます。
Seq チェックボック ス(Seq 1 \sim Seq 10)	·
出力オフ	チェックすると、試験終了時に試験信号をオフにします。(PCR-LEの出力をオフにします。)
UT[V]	供試機器の定格電圧を入力します。 入力範囲: 50.0V から 305.0V 電圧レンジを適切に選択する必要があります。電圧レンジはツールバーまたは「機器」メニューで設定します。
全体の繰り返し	選択した Seq 1 ~ Seq 10 全体の繰り返し回数を入力します。 ・ 入力範囲:1 回から 9999 回

試験の概要

DC 電源の電圧ディップ、短時間停電、および電圧変動イミュニティ試験とは、DC 電源電圧の急激な低下、あるいは緩やかな低下に対して、機器のイミュニティを試験します。 三相運転でこの試験は選択できません。

DC 電源の電圧ディップおよび短時間停電

項目	説明
Seq タブ	試験条件をそれぞれの Seq タブ(Seq 1 \sim Seq 10)に設定できます。
試験項目	DC の電圧ディップ、または DC の短時間停電を選択します。
UT[V]	 初期の電圧(復帰時の電圧も同じ値)を入力します。 ・入力範囲:50.0Vから431.0V ・電圧レンジを適切に選択する必要があります。電圧レンジはツールバーまたは「機器」メニューで設定します。 ・試験実行に使用するSeqタブ間のUT設定値を確認してください。Seqタブ間でUT設定値が異なる場合、実行Seqタブの選択によっては、意図しない電圧変化となります。
レベル [%]	DC の電圧ディップでは UT に対する低下率を入力します。DC の短時間停電では 0% に固定されます(入力はなし)。 ・入力範囲:0.0% から 200.0%
インピーダンス	DC の短時間停電ではインピーダンスの条件を入力します。 ・ 入力範囲:「高」(高インピーダンス)または「低」(低インピーダンス)のいずれかを選択します。 ・ 「高」では供試機器からの逆電流をブロックし、「低」では供試機器からのインラッシュ電流を吸収します。
継続時間 [s]	DC の電圧ディップまたは DC の短時間停電の継続時間を入力します。 ・ 入力範囲: 0.001s から 360000.000s
インターバル [s]	復帰電圧(UT)になってから、次の電圧低下までの間隔を入力します。最後のインターバルでは、次の Seq タブへの移行時間になります。 ・ 入力範囲:0.001s から 360000.000s
タブ内の繰り返し	Seq タブ内における繰り返し回数を入力します。 ・ 入力範囲:1 回から 999 回
トリガ出力	トリガ信号出力を選択します。チェックボックスで選択した位置に 赤色マーク ◆ が表示されます。波形プレビューにも表示されます。
Seq チェックボック ス(Seq 1 ~ Seq 10)	試験を実行する Seq タブをチェックボックスで選択します。Seq 1 から順番に実行されます。チェックしない Seq タブはパスされます。
出力オフ	チェックすると、試験終了時に試験信号をオフにします。(PCR-LE の出力をオフにします。)
全体の繰り返し	選択した Seq 1 ~ Seq 10 全体の繰り返し回数を入力します。 ・ 入力範囲:1 回から 9999 回

DC 電源の電圧変動

QIS2

画面上に準備されている数値を選択または入力範囲内の数値を入力します。数値を入力した 場合は Enter キーで確定してください。

項目	説明
Seq タブ	DC 電源の電圧ディップおよび短時間停電と同じです。
試験項目	DC の電圧変動を選択します。
UT[V]	DC 電源の電圧ディップおよび短時間停電と同じです。
レベル [%]	UT に対する変化率を入力します。 ・ 入力範囲:0.0% から 200.0%
下降時間 [s]	初期の電圧 (UT) から低下電圧まで減少させる時間を入力します。 - 入力範囲: 0.001s から 360000.000s
低下時間 [s]	低下電圧の継続時間を入力します。 ・ 入力範囲:0.001s から 360000.000s
上昇時間 [s]	低下電圧から初期の電圧と同じ値(UT)に復帰するまでの時間を入力します。 ・ 入力範囲:0.001s から 360000.000s
インターバル [s]	
タブ内の繰り返し	-
トリガ出力	-
Seq チェックボック ス(Seq 1 ~ Seq 10)	- DC 電源の電圧ディップおよび短時間停電 と同じです。
出力オフ	-
周波数 [Hz]	-
全体の繰り返し	

45

試験の概要

電圧ディップ、短時間停電、および電圧変動イミュニティ試験とは、電源電圧の急激な低下、 あるいは緩やかな低下に対して、機器のイミュニティを試験します。

1 相当たりの入力電流によって 2 つの規格に分かれます。IEC61000-4-11 は 16A 以下、IEC61000-4-34 は 16A 超です。 QIS2 では、試験条件において 1 相当たりの入力電流による区別は行っていません。 試験結果ファイルは規格毎に作成されます。

NOTE

IEC61000-4-34 の試験では、ディップシミュレータの素子を保護するためにディップシミュレータを使用できません。

電圧ディップ、短時間停電、および電圧変動イミュニティ試験の設定項目については、 IEC61000-4-11 のそれぞれの項目を参照してください。

インターフェースを設定する

PCR-LE やディップシミュレータとのインターフェースは、「I/O コンフィグレーション」ダイアログボックスで設定できます。「機器」メニューから「I/O コンフィグレーション」を選択します。

■VISA リソース名

ドロップダウンリストに表示された ID を選択して、「OK」ボタンをクリックします。

RS232、USB、GPIB または LAN インターフェースは、それぞれ取得できた文字列と一緒に「ASRL」、「USB」、「GPIB」または「TCPIP」の文字列が表示されます。

(例) USB0::0x0B3E::0x1015::12345678::INSTR

- GPIB に続く数字は GPIB のアドレスです。
- RS232で制御する場合は、交流電源側のRS232のプロトコルは以下のように設定してください。

Baudrate(通信速度): 19200bps、Data(データ長): 8 ビット Stop(ストップビット): 1 ビット、Flow Ctrl(フロー制御): OFF

NOTE

LAN インターフェースを KI-VISA で使用する場合、ドロップダウンリストに PCR-LE の ID 文字列が表示されないことがあります。その場合には、すべてのプログラム > Kikusui IO Software > KI-VISA > Instrument Explorer > 「KI-VISA IO Config...」ボタンをクリックし、「LAN」タブを選択して「Search Instruments」を実行してください。

■DSI シリーズまたは IT01-PCR-LE を使う

使用する機器に合わせて、「DSI シリーズ」または「IT01-PCR-L」を選択してください。

■シミュレーション

チェックすると、PCR-LE の接続なしで QIS2 の動作をシミュレーションできます。単相 2 線 (1P2W)、単相 3 線 (1P3W) または三相 (3P) が選択できます。デモ用に使用できます。

ディスプレイの文字サイズについて

ディスプレイの文字サイズが OS のデフォルトよりも大きいサイズに設定されていると、下図のように QIS2 の画面上の文字が正しく収まらないことがあります。

このような場合は、デフォルトの設定に戻してご使用ください。

デフォルト設定

Windows 7/8:小 -100%(規定)Windows XP:通常のサイズ(96DPI)

ディスプレイの文字サイズを変更する

Windows 7/8 の場合

- ずスクトップ上で右クリックして「個人設定」を選択します。
- 個人設定画面の左下にある「ディスプレイ」をクリックします。
- 🤾 「小-100% (規定)」を選択します。

Windows XP の場合

- ずスクトップ上で右クリックして「プロパティ」を選択します。
- 画面のプロパティの「設定」タブをクリックし、「詳細設定」をクリックします。
- **QDPI** 設定から「通常のサイズ(96DPI)」を選択します。

エラーメッセージ一覧

メッセージ	原因	対処方法
〈PCR-LE〉 ^{*1} で通信エラーが発生 したため、Quick Immunity Sequencer 2 を終了します。 〈PCR-LE〉 ^{*1} のパワースイッチを オフにしてください。	QIS2 動作中に PCR-LE の電源がオフになった。QIS2 動作中に通信ケーブルが抜けた。	PCR-LE の電源や通信 ケーブルを確認してくだ さい。
〈ディップシミュレータ〉 *2 で通信エラーが発生ししたため、Quick Immunity Sequencer 2 を終了します。 〈PCR-LE〉 *1 と〈ディップシミュレータ〉 *2 のパワースイッチをオフにしてください。	QIS2 動作中にディップシミュレータの 電源がオフになった。QIS2 動作中に通信ケーブルが抜けた。	ディップシミュレータの 電源や通信ケーブルを確 認してください。
〈PCR-LE〉 ^{*1} の接続に失敗しました。 I/O コンフィグレーションを設定 しますか?	 QIS2 起動時に PCR-LE の電源がオフになっていた。 QIS2 起動時に通信ケーブルが抜けていた。 	PCR-LE の電源や通信 ケーブルを確認してくだ さい。
〈ディップシミュレータ〉*2 の接続に失敗しました。 I/O コンフィグレーションを設定しますか?	 QIS2 起動時にディップシミュレータの電源がオフになっていた。 QIS2 起動時に通信ケーブルが抜けていた。 QIS2 起動時にディップシミュレータ後面のディップスイッチが正しく設定されていなかった。 	ディップシミュレータの 電源や通信ケーブルおよ びディップスイッチを確 認してください。
〈ディップシミュレータ〉 ^{*2} で信 号ケーブルエラーが発生しまし た。Quick Immunity Sequencer 2 を終了しますか?	PCR-LE とディップシミュレータ間を接続 する位相信号ケーブルが抜けている。	信号ケーブルを確認して ください。

- *1. 使用中の PCR-LE の機種名が表示されます。 *2. 使用中のディップシミュレータの機種名が表示されます。

メニューリファレンス

メニュー説明		説明
ファイ	ファイル (F)	
	新規作成 (N)	デフォルト値を設定し、無題のファイル名で試験条件ファイルを新規に 作成します。
	開く (O) ^{*1}	試験条件ファイルを選択して開きます。
	上書き保存(試験条件) (S) ^{*1}	現在開いている試験条件ファイルと同じ名前で、試験条件設定を上書き 保存します。すべての規格の設定を保存します。
	名前を付けて保存(試験 条件)(A)	現在開いている試験条件ファイルに名前を付けて、任意のフォルダに保 存できます。すべての規格の設定を保存します。
	試験結果ファイルのオプ ション (O)	区切り文字、文字コード、および拡張子を指定して、試験結果ファイル 形式を設定します。
	試験結果の保存 (R)	実行結果ファイルに名前を付けて、任意のフォルダに保存できます。
	最近使った試験条件ファ イル (F)	最近使った試験条件ファイルがサブメニューに表示(8 件まで)されま す。表示されたファイル名を選択するとファイルが開きます。
	終了 (X)	QIS2 を終了します。
編集(E)	
	Seq タブのコピー (C)	選択されている Seq タブの全項目をメモリーにコピーします。
	Seq タブへの貼り付け (P)	「Seq タブのコピー」でコピーされたメモリーの内容を、選択されている タブへコピーします。メモリーにコピーされていない場合は、淡色表示 になります。
	次の Seq タブへのコピー (N)	「Seq タブのコピー」と「Seq タブへの貼り付け」を組み合わせた機能です。選択されているタブの全項目をメモリーにコピーし、次のタブへ貼り付けます。
	Class1 のデフォルト値 (1)	テストレベル 1 ~ 8 がサブメニューに表示されます。該当しない クラ
	Class2 のデフォルト値 (2)	- スやテストレベルは淡色表示になっていて選択できません。表示された - テストレベルをクリックすると、選択されている規格ボタン対応するデ
	Class3 のデフォルト値 (3)	フォルト値を設定できます。
	拡大 (Z) ^{*1}	波形プレビューの波形を水平軸方向に拡大します。
	縮小 (O) ^{*1}	波形プレビューの波形を水平軸方向に縮小します。
機器()	
	実行 (R) ^{*1}	試験を開始します。
	停止 (T) ^{*1}	試験を途中で停止します。PCR-LE の出力はオンのままですので、注意してください。
	非常停止 (A) ^{*1}	試験を途中で停止し、PCR-LE の出力をオフにします。 ・ 緊急の場合は PCR-LE の POWER スイッチをオフにしてください。
	出力 (O) ^{*1}	PCR-LE の出力をオンします。出力オン状態のまま試験を開始することが可能となります。出力がオフのときは「出力」ボタンをクリックすると出力がオンになります。
	電圧レンジ (V) ^{*1, *2}	サブメニューに「High」、「Low」が表示されます。どちらか一方のレンジを選択します。 切り替えは、出力がオフのときのみ可能です。 Low(100V レンジ): PCR-LE の電圧レンジを 100V にします。選択すると左側にチェックマークが付きます。 High(200V レンジ): PCR-LE の電圧レンジを 200V にします。選択すると左側にチェックマークが付きます。

メニュー		説明
	AC モード (M)*2	PCR-LE の AC モードを選択します。
	DC モード (D)*2	PCR-LE の DC モードを選択します。
	AC+DC モード (C)*2	PCR-LE の AC+DC モードを選択します。
	アラームクリア (L)	アラームが検出されたとき、アラームを解除します。 アラームを解除する前に、アラームの原因をすべて取り除いてくださ い。
	リミット値の設定	電圧リミット、電流リミット、および保護機能(OVP と UVP)を設定できます。
	I/O コンフィグレーション (I)*3	PCR-LE などとの通信に関する設定を行います。「I/O コンフィグレーション」のダイアログボックスが開きます。
オプション (O)		
	すべてデフォルトに戻す (F)	コンボボックスの履歴をクリアしてデフォルト値にします。
	色の設定 (C)	プレビュー波形の 色、背景色、波形プログレスバーの色、および線の太さを変更できます。
	表示オプション (D)	確認メッセージや波形プログレスを表示する / しないを設定できます。
ヘルフ	プ (H)	
	目次 (J)(C)	日本語版 QIS2 オペレーションガイドを開きます。
	目次 (E)(O)	英語版 QIS2 オペレーションガイドを開きます。
	ユーザーズマニュアル (J)	日本語版 PDF の QIS2 オペレーションガイドを開きます。
	ユーザーズマニュアル (E)	英語版 PDF の QIS2 オペレーションガイドを開きます。
	Quick Immunity Sequencer 2 のバージョン情報 (A)	QIS2 のバージョン情報を表示します。

^{*1.} ツールバーに同じ機能のボタンがあります。
*2. PCR-LE の出力がオフのときのみ選択できます。
*3. 「DSI シリーズまたは IT01-PCR-L を使う」を選択した場合、IEC61000-4-11 の電圧変動試験はできません。電圧ディップ、短時間停電のみの選択となります。