
 IVI-COM Instrument Driver Programming Guide

IVI-COM Instrument Driver
Programming Guide

 (C#.NET Edition)
Dec 2003 Revision 1.1

1- Overview

1-1 Using IVI-COM Drivers in C#.NET
Because C#.NET is a managed environment, IVI-COM instrument drivers that are executed
under the unmanaged environment cannot be used directly. In general, in order to use a
COM object from the managed environment, an assembly that is called RCW(Runtime
Callable Wrapper) associated with it is necessary. Fortunately this assembly can be
automatically generated from the type library by using Add Reference menu in the Visual
Studio.NET integrated development environment, or by using the command-line utility
TLBIMP.EXE (Type Library Importer).

When using an IVI-COM instrument driver, there are two approaches – using specific
interfaces and using class interfaces. The former is to use interfaces that are specific to an
instrument driver and you can utilise the most of features of the instrument you use. The
later is to utilise instrument class interfaces that are defined in the IVI specifications allowing
utilising interchangability features, but instrument specific features are restricted.

Notes:

The instrument class to which the instrument driver belongs is documented in Readme.txt for each of
drivers. The Readme document can be viewed from Start button Program IVI folder.

If the instrument driver does not belong to any instrument classes, you can't utilise class interfaces.
This means that you cannot develop applications that utilise interchangability features.

1-2 Creating An Application Project
This document explains how to develop a form-oriented application that is the most popular
style in C#.NET. After launching the Visual Studio.NET integrated development environment,
choose File | New | Project menu to bring up the New Project dialogue. Select C#
Project from Project Types, select Windows Application from Templates, give a
project name, and then click OK. A new application project will be then created.

Notes:

This guidebook assumes that you use IVI-COM Kikusui4800 instrument driver (for KIKUSUI PIA4800
series DC Power Supply Controller). You can also use IVI-COM instrument drivers for other models in
the same manner.

2- Example Using Specific Interfaces

Here we introduce an example using specific interfaces. By using specific interfaces, you can
utilise the maximum power of driver features but you have to spoil interchangability.

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 1/16

 IVI-COM Instrument Driver Programming Guide

2-1 Importing Type Libraries
What you should do first after creating a new project is, generate an interop assembly from
the type library of the IVI-COM instrument driver you want to use, and then reference to it.
Choose Project | Add References menu to bring up the Add References dialogue, then
choose the COM tab.

Figure 2-1 Add Reference dialogue

Since this example assumes that you use Kikusui4800 IVI-COM driver, choose Kikusui4800
(Kikusui) 1.0 Type Library. Furthermore choose also IviDriver 1.0 Type Library and
IviDCPwr 2.0 Type Library.

Because IviDriver is a common item for every IVI-COM instrument driver, you need choose
it regardless what instrument driver you use. IviDCPwr is necessary because the
Kikusui4800 driver belongs to the IviDCPwr class. For example, if the instrument driver you
actually use belongs to the IviDmm class, you need select the IviDmm Type Library. After
selecting them with the Select button, click the OK button.

2-2 Object Browser
By adding references to the assemblies, you can confirm available syntaxes through the
Object Browser of the Visual Studio.NET integrated development environment. To launch
the Object Browser, choose View | Object Browser menu.

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 2/16

 IVI-COM Instrument Driver Programming Guide

Figure 2-2 Object Browser

2-3 Creating Object and Initialising Session
First, doubleclick on the design-time form with the mouse. Then the Form1_Load event
handler having only a skeleton code will be shown. Then write the following using directive,
which allows you to omit the namespace references.

using Kikusui.Kikusui4800.Interop;

Declare m_dcpwr as a form's data member variable as Kikusui4800Class type. Do not
forget to write the new operator since you also create an instrument driver object here.

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 3/16

 IVI-COM Instrument Driver Programming Guide

Figure 2-3 Form1_Load handler

Just creating the object does not perform any instrument I/Os. To initiate I/Os with the
instrument, you use the Initialize method. As you type m_dcpwr.Ini in the
Form1_Load handler, the IntelliSense feature of C#.NET will show the method/property list
for Kikusui4800Class type. Since you have typed until Ini here, the Initialize
method that is the closest name candidate will be highlighted.

Figure 2-4 IntelliSense (Method/Property List)

By pressing the Tab key then typing a left parenthesis "(", IntelliSense will show all the
parameters for the method.

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 4/16

 IVI-COM Instrument Driver Programming Guide

Figure 2-5 IntelliSense (Parameter List)

Now let's talk about the parameters for the Initialize method. Every IVI-COM
instrument driver has an Initialize method that is defined in the IVI specifications. This
method has the following parameters.

Table 2-1 Parameters for Initialize method

Parameter Type Description

ResourceName String VISA resource name string. This is decided according to
the I/O interface and/or address through which the
instrument is connected. If the instrument has the
address 3 on the GPIB board #0, for example, it can be
GPIB0::3::INSTR.

IdQuery Boolean Specifying TRUE performs ID query to the instrument.

Reset Boolean Specifying TRUE resets the instrument settings.

OptionString String Overrides the following settings instead of default:

RangeCheck
Cache
Simulate
QueryInstrStatus
RecordCoercions
Interchange Check

Furthermore you can specify driver-specific options if
the driver supports DriverSetup features.

ResourceName specifies a VISA resource. If IdQuery is TRUE, the driver queries the
instrument identities using a query command such as "*IDN?". If Reset is TRUE, the
driver resets the instrument settings using a reset command such as "*RST".

OptionString has two features. One is what configures IVI-defined behaviours such as
RangeCheck, Cache, Simulate, QueryInstrStatus, RecordCoercions, and
Interchange Check. Another one is what specifies DriverSetup that may be
differently defined by each of instrument drivers. Because the OptionString is a string
parameter, these settings must be written as like the following example:

QueryInstrStatus = TRUE , Cache = TRUE , DriverSetup=12345

Names and setting values for the features being set are case-insensitive. Since the setting
values are Boolean type, you can use any of TRUE, FALSE, 1, and 0. Use commas for
splitting multiple items. If an item is not explicitly specified in the OptionString
parameter, the IVI-defined default value is applied for the item. The IVI-defined default
values are TRUE for RangeCheck and Cache, and FALSE for others.

Some instrument drivers may have special meanings for the DriverSetup parameter. It
can specify items that are not defined by the IVI specifications when invoking the
Initialize method, and its purpose and syntax are driver-specific. Therefore, specifying
the DriverSetup must be at the last part on the OptionString parameter. Because the

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 5/16

 IVI-COM Instrument Driver Programming Guide

contents of DriverSetup are different depending on each driver, refer to driver's Readme
document or online help.

Now try to write Initialize call. The OptionString parameter is optional and you can
specify null to it. (OptionString is an optional parameter in Visual Basic languages, but
can't be skipped in the C# language.)

uing Kikusui.Kikusui4800.Interop;

...(snip)...

public class Form1 : System.Windows.Forms.Form
{
 /// <summary>
 /// Required designer variable.
 /// </summary>
 private System.ComponentModel.Container components = null;
 private Kikusui4800Class m_dcpwr = new Kikusui4800Class();

...(snip)...

 private Form1_Load(object sender, System.EventArgs e)
 {
 m_dcpwr.Initialize("GPIB0::3::INSTR", true, true, null);
 }
}

2-4 Closing Session

To close the instrument driver session, use the Close method. Since this example wrote the
Initialize method call in the Form1_Load handler, it is better to write the Close method call
in the Dispose handler that is overridden from the Form1 class. To override the Dispose
handler, select Form1 at the upper-left combobox, and then select "Dispose(bool disposing)"
at the right-side combobox.

Figure 2-6 Overriding Dispose handler

Now the codes for the overridden Dispose method will appear. Add some codes so that
they become as like below.

protected override void Dispose(bool disposing)
{
 if(disposing)
 {
 if (components != null)
 {
 components.Dispose();
 }
 m_dcpwr.Close();
 m_dcpwr = null;
 }
 base.Dispose(disposing);

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 6/16

 IVI-COM Instrument Driver Programming Guide

}

2-5 Execution

You can execute the previous codes for the time being. Since the Initialize method is
invoked in the Form1_Load handler, communications with the instrument immediately start
as you launch the program. If the instrument is actually connected and the Initialize
method call has succeeded, the form screen appears. If a communication problem has
occurred or the VISA library is not configured properly, a COM exception
(System.Runtime.InteropServices.COMException) will be generated.

Figure 2-7 COM exception

2-6 Repeated Capabilities

In case of Kikusui4800 IVI-COM driver, output settings for the DC power supplies are
performed through the Output interfaces as the same concept defined by the IviDCPwr class.
In case of specific interfaces provided by the Kikusui4800 driver, they are the
IKikusui4800Output and IKikusui4800Outputs interfaces. An instrument driver that
is compliant with the IviDCPwr class is designed assuming that the instrument is a multi-track
power supply equipping multiple output channels.

These COM interfaces have the same name with an exception of differences between
singular and plural forms. An interface having this kind of plural name is generally called
"repeated capabilities" in the IVI specifications. Repeated capabilities are something like a
container that is defined for handling equivalent or similar multiple objects, and a COM
interface having a plural name such as IKikusui4800Outputs normally has the Count,
Name, and Item properties (all are read-only). Plus, a singular object can be referenced
through the Item property.

First look at the following example, which controls an output channel identified by the name
"N5!C1" on the power supply instrument (actually a Kikusui PIA4800 series DC Power
Supply Controller) hosted by the Kikusui4800 IVI-COM driver. This example writes the codes
in the event handler assuming you put a command button (button1) on the form.

private void button1_Click(object sender, System.EventArgs e)
{
 IKikusui4800Output output;
 output = m_dcpwr.Outputs.get_Item("N5!C1");
 output.VoltageLevel = 10.5;
 output.CurrentLimit = 1.2;
 output.Enabled = true;
}

Once the IKikusui4800Output interface has been acquired, there is no difficulty at all.
The VoltageLevel and the CurrentLimit properties set voltage level and current limit
settings respectively. The Enabled property switches output ON/OFF state.

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 7/16

 IVI-COM Instrument Driver Programming Guide

Mind the grammar for acquiring the IKikusui4800Output interface. This example here
acquires the IKikusui4800Outputs interface though the Output property of the
IKikusui4800 interface, then acquires IKikusui4800Output interface by using the
Item property.

 IKikusui4800Output output;
 output = m_dcpwr.Outputs.get_Item("N5!C1");

The codes can also be written as like below.

 IKikusui4800Outputs outputs = m_dcpwr.Outputs;
 IKikusui4800Output output = outputs.get_Item("N5!C1");

Now mind the parameter passed to the Item property. This parameter specifies the name
of the single Output object to be referenced. Actual available names (Output Name) are
however different depending on drivers. For example, Kikusui4800 IVI-COM driver uses an
expression like "N1!C1" specifying NODE and CH. However other drivers, even if being
IviDCPwr class-compliant, may have different names. One instrument driver, for example,
may use an expression like "Track1". Although available names on a particular instrument
driver are normally documented in the driver's online help, you can also check them out by
writing some test codes shown below.

 IKikusui4800Outputs outputs = m_dcpwr.Outputs;
 int cnt = outputs.Count;
 int ndx;
 for(ndx=1; ndx<=cnt; ndx++)
 {
 string strName;
 strName = outputs.Name(ndx);
 System.Diagnostics.Debug.WriteLine(strName);
 }

The Count property returns number of single objects that the repeated capabilities have.
The Name property returns the name of single object for the given index. The name is
exactly the one that can be passed to the Item property as a parameter. In the above
example, the codes iterate from the index 1 to Count by using the for statement. Mind
that the index numbers for the Name parameter is one-based, not zero-based.

3- Example Using Class Interfaces

Now we explain how to use class interfaces. By using class interfaces, you can swap the
instruments without recompiling/relinking your application codes. In this case, however, IVI-
COM instrument drivers for both pre-swap and post-swap models must be provided, and
these drivers both must belong to the same instrument class. There is no interchangability
available between different instrument classes.

3-1 Virtual Instrument
What you have to do before creating an application that utilises interchangability features is
create a virtual instrument. To realise interchangability features, you should not write codes
that are very specific to a particular IVI-COM instrument driver (e.g. creating an object
instance directly as Kikusui4800 type) and should not write a specific VISA resource name
such as "GPIB0::3::INSTR". Writing them directly in the application spoils interchangability.

Instead, the IVI-COM specifications define methods to realise interchangability by placing an
external IVI configuration store. The application indirectly selects an instrument driver

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 8/16

 IVI-COM Instrument Driver Programming Guide

according to contents of the IVI Configuration Store, and accesses the indirectly loaded
driver through the class interfaces.

The IVI Configuration Store is normally /Program Files/IVI/Data/IviConfigurationStore.XML
file and is accessed through the IVI Configuration Server DLL. This DLL is mainly used by
IVI-COM instrument drivers and some configuration tools provided by instrument driver
vendors, not by end-user applications. KIKUSUI provides a configuration tool called Kikusui
IVI Config Utility that allows you to configure virtual instrument settings.

Notes:

As for how to configure virtual instruments by using Kikusui IVI Config Utility, refer to "Programming
Guide, (IVI Config Utility Edition)."

This guidebook assumes that a virtual instrument having the logical name "MySupply" is
already created, using Kikusui4800 driver, and using a VISA resource "GPIB0::3::INSTR".

3-2 Importing Type Libraries
What you should do first after creating a new project is, generate an interop assembly from
the type library of the IVI-COM instrument driver you want to use, and then reference to it.
Choose Project | Add References menu to bring up the Add References dialogue, and
then choose the COM tab.

Figure 3-1 Add Reference dialogue

Since this example assumes that you use the IviDCPwr class interface, select IviDCPwr 2.0
TypeLibrary. Furthermore, make sure select IviDriver 1.0 Type Library and
IviSessionFactory 1.0 TypeLibrary regardless instrument classes you use. After selecting
one or more items with the Select button, then click the OK button.

Importing type libraries are now completed. Your application will be able to use arbitrary
instrument drivers through the IviDCPwr class interfaces.

3-3 Object Browser
By adding references to the assemblies, you can confirm available syntaxes through the
Object Browser of the Visual Studio.NET integrated development environment. To launch
the Object Browser, choose View | Object Browser menu.

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 9/16

 IVI-COM Instrument Driver Programming Guide

Figure 3-2 Object Browser

3-4 Creating Object and Initialising Session
First, doubleclick on the design-time form with the mouse. Then the Form1_Load event
handler having only a skeleton code will be shown. Then write the following using directive,
which allows you to omit the namespace references.

using Ivi.SessionFactory.Interop;
using Ivi.Driver.Interop;
using Ivi.DCPwr.Interop;

Declare m_dcpwr as a form's data member variable as IIviDCPwr type. A type that begins
with capital "I" such as IIviDCPwr is in general a COM interface type, therefore you cannot
create an object with the New operator.

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 10/16

 IVI-COM Instrument Driver Programming Guide

Figure 3-3 Form1_Load handler

Next you must create an instrument driver object. To create an instrument driver object, use
IVI Session Factory. The IVI Session Factory is a DLL server that comes with the IVI Shared
Components. It extracts configuration information of the virtual instrument specified by the
given logical name, loads the appropriate instrument driver software, then creates an
instrument driver object.

 private Form1_Load(object sender, System.EventArgs e)
 {
 IviSessionFactoryClass sf = new IviSessionFactoryClass();
 m_dcpwr = (IIviDCPwr)sf.CreateDriver("MySupply");

 }

The example here creates an IviSessionFactory object and then creates an instrument
object with the CreateDriver method. The parameter "MySupply" must already be
configured as a valid logical name. The instrument driver DLL to be loaded will be what
specified by the virtual instrument MySupply.

Mind that an explicit typecast is required when assigning the return value from the
CreateDriver method to the variable m_dcpwr. The COM interface that is returned from
the CreateDriver method is strictly declared as IUnknown type, therefore the declaration
in the interop assembly that corresponds to this interface is object type. In this case, it is
necessary to invoke QueryInterface to acquire the IIviDCPwr interface. In case of
C#.NET language, an explicit typecast makes the QueryInterface be invoked behind the
scenes.

After creating the driver object, invoke the Initialize method. Although parameters of
the Initialize method are exactly the same as the case of using specific interfaces, you
should specify the logical name for the ResourceName parameter instead of specifying a
VISA resource.

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 11/16

 IVI-COM Instrument Driver Programming Guide

Again let 's talk about parameters of the Initialize method. Every IVI-COM instrument
driver has an Initialize method that is defined by the IVI specifications. This method
has the following parameters.

Table 3-1 Parameters for Initialize method

Parameter Type Description

ResourceName String VISA resource name string. This is decided according to
the I/O interface and/or address through which the
instrument is connected. If the instrument has the
address 3 on the GPIB board #0, for example, it can be
GPIB0::3::INSTR.

If specifying a logical name, the VISA resource that is
described in the logical name's Hardware Asset
configuration will be indirectly specified.

IdQuery Boolean Specifying TRUE performs ID query to the instrument.

Reset Boolean Specifying TRUE resets the instrument settings.

OptionString String Overrides the following settings instead of default:

RangeCheck
Cache
Simulate
QueryInstrStatus
RecordCoercions
Interchange Check

Furthermore you can specify driver-specific options if
the driver supports DriverSetup features.

In general, applications that are aware of interchangability use a logical name for the
ResourceName parameter rather than a VISA resource. Actually it is possible to specify a
VISA resource, however, doing so slightly spoils abstraction of virtual instrument.

If IdQuery is TRUE, the driver queries the instrument identities using a query command
such as "*IDN?". If Reset is TRUE, the driver resets the instrument settings using a reset
command such as "*RST".

OptionString has two features. One is what configures IVI-defined behaviours such as
RangeCheck, Cache, Simulate, QueryInstrStatus, RecordCoercions, and
Interchange Check. Another one is what specifies DriverSetup that may be
differently defined by each of instrument drivers. Because the OptionString is a string
parameter, these settings must be written as like the following example:

QueryInstrStatus = TRUE , Cache = TRUE , DriverSetup=12345

Names and setting values for the features being set are case-insensitive. Since the setting
values are Boolean type, you can use any of TRUE, FALSE, 1, and 0. Use commas for
splitting multiple items. If an item is not explicitly specified in the OptionString
parameter, the IVI-defined default value is applied for the item. The IVI-defined default
values are TRUE for RangeCheck and Cache, and FALSE for others.

Some instrument drivers may have special meanings for the DriverSetup parameter. It
can specify items that are not defined by the IVI specifications when invoking the
Initialize method, and its purpose and syntax are driver-specific. Therefore, specifying
the DriverSetup must be at the last part on the OptionString parameter. Because the

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 12/16

 IVI-COM Instrument Driver Programming Guide

contents of DriverSetup are different depending on each driver, refer to driver's Readme
document or online help.

Now try to write Initialize call. The OptionString parameter is optional and you can
specify null to it. (OptionString is an optional parameter in Visual Basic languages, but
can't be skipped in the C# language.)

 m_dcpwr.Initialize("MySupply", true, true, null);

3-5 Closing Session

To close the instrument driver session, use the Close method. Since this example wrote the
Initialize method call in the Form1_Load handler, it is better to write the Close method call
in the Dispose handler that is overridden from the Form1 class. To override the Dispose
handler, select Form1 at the upper-left combobox, and then select "Dispose(bool disposing)"
at the right-side combobox.

Figure 3-4 Overriding Dispose handler

Now the codes for the overridden Dispose method will appear. Add some codes so that
they become as like below.

protected override void Dispose(bool disposing)
{
 if(disposing)
 {
 if (components != null)
 {
 components.Dispose();
 }
 m_dcpwr.Close();
 m_dcpwr = null;
 }
 base.Dispose(disposing);
}

3-6 Execution

You can execute the previous codes for the time being. Since the Initialize method is
invoked in the Form1_Load handler, communications with the instrument immediately start
as you launch the program. If the instrument is actually connected and the Initialize
method call has succeeded, the form screen appears. If a communication problem has
occurred or the VISA library is not configured properly, a COM exception
(System.Runtime.InteropServices.COMException) will be generated.

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 13/16

 IVI-COM Instrument Driver Programming Guide

Figure 3-5 COM exception

3-7 Repeated Capabilities

In case of IviDCPwr class interfaces, output settings for the DC power supplies are performed
through the Output interfaces. The interfaces used here are IIviDCPwrOutput and
IIviDCPwrOutputs. An instrument driver that is compliant with the IviDCPwr class is
designed assuming that the instrument is a multi-track power supply equipping multiple
output channels.

These COM interfaces have the same name with an exception of differences between
singular and plural forms. An interface having this kind of plural name is generally called
"repeated capabilities" in the IVI specifications. Repeated capabilities are something like a
container that is defined for handling equivalent or similar multiple objects, and a COM
interface having a plural name such as IIviDCPwrOutputs normally has the Count, Name,
and Item properties (all are read-only). Plus, a singular object can be referenced through
the Item property.

 First look at the following example, which controls an output channel identified by the name
"Track_A" registered as in the virtual instrument's virtual name. This example writes the
codes in the event handler assuming you put a command button (button1) on the form.

private void button1_Click(object sender, System.EventArgs e)
{
 IKikusui4800Output output;
 output = m_dcpwr.Outputs.get_Item("Track_A");
 output.VoltageLevel = 10.5;
 output.CurrentLimit = 1.2;
 output.Enabled = true;
}

Once the IIviDCPwrOutput interface has been acquired, there is no difficulty at all. The
VoltageLevel and the CurrentLimit properties set voltage level and current limit
settings respectively. The Enabled property switches output ON/OFF state.

Mind the grammar for acquiring the IIviDCPwrOutput interface. This example here
acquires the IIviDCPwrOutputs interface though the Output property of the IIviDCPwr
interface, then acquires IIviDCPwrOutput interface by using the Item property.

 IIviDCPwrOutput output;
 output = m_dcpwr.Outputs.get_Item("Track_A");

The codes can also be written as like below.

 IIviDCPwrOutputs outputs = m_dcpwr.Outputs;
 IIviDCPwrOutput output = outputs.get_Item("Track_A");

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 14/16

 IVI-COM Instrument Driver Programming Guide

Now mind the parameter passed to the Item property. This parameter specifies the name
of the single Output object to be referenced. In the example that used specific interfaces,
we specified a name that was very dependent upon each driver (physical name), however we
use a different approach. Because a physical name that depends on a particular instrument
driver should not be used, we specify a virtual name instead.

3-8 Swapping Instruments

In the previous examples, we used the Kikusui4800 instrument driver for the virtual
instrument configurations. Now what will happen if you replace the instrument with the one
that is hosted by the AgilentE36xx driver? In this case you do not have to recompile/relink
your application, but you need change the virtual instrument configurations.

The configurations you have to change are basically Software Module selection on the Driver
Session tab, and virtual name mappings on the Virtual Names tab (because physical names
of the map target are changed). Replacing instruments may not allow using the same I/O
interface (such as changing from a GPIB-only instrument to an RS232-only instrument), so
you may have to change IO Resource Descriptor on the Hardware Asset tab as need.

Notes:

As for how to configure virtual instruments by using Kikusui IVI Config Utility, refer to "Programming
Guide, (IVI Config Utility Edition)."

4- Error Handling

In the previous examples, there was no error handling processed. However, setting an out-
of-range value to a property or invoking an unsupported function may generate an error
from the instrument driver. Furthermore, no matter how the application is designed and
implemented robustly, it is impossible to avoid instrument I/O communication errors.

When using IVI-COM instrument drivers, every error generated in the instrument driver is
transmitted to the client program as a COM exception. In case of C#.NET, a COM exception
can be handled by using try, catch, and finally blocks.

Now let's change the example of setting voltage and current as follows.

private void button1_Click(object sender, System.EventArgs e)
{
 try
 {
 IKikusui4800Output output;
 output = m_dcpwr.Outputs.Item("N5!C1");
 output.VoltageLevel = 10.5;
 output.CurrentLimit = 1.2;
 output.Enabled = true;
 }
 catch(System.Runtime.InteropServices.COMException ex)
 {
 MessageBox.Show(
 ex.Message, "error 0x" + Convert.ToString(ex.ErrorCode, 16));
 }
 catch(Exception ex)
 {
 MessageBox.Show(ex.Message, "error");
 }

}

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 15/16

 IVI-COM Instrument Driver Programming Guide

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 16/16

In this example, errors are handled by using try, catch, and finally blocks. For
example, if the name passed to the Item property is wrong, if an out-of-range value is
passed to VoltageLevel, or if an instrument communication error is generated, a COM
exception will be generated in the instrument driver. Above example just displays a simple
message box when an exception has occurred.

Detail about the error (COM exception) can be acquired through the parameter of catch
block. This example sets the error code (hexadecimal) obtained from ErrorCode property
to the message box caption, and sets the description string obtained from the Message
property to the main body text.

Figure 4-1 Message box by error handling

IVI-COM Instrument Dr ver Programm ng Guide i i
 t i r

 .

Product names and company names that appear in his gu debook are t ademarks or registered
trademarks of their respective companies
©2003 Kikusui Electronics Corp. All Rights Reserved.

	Overview
	Using IVI-COM Drivers in C#.NET
	Creating An Application Project

	Example Using Specific Interfaces
	Importing Type Libraries
	Object Browser
	Creating Object and Initialising Session
	Closing Session
	Execution
	Repeated Capabilities

	Example Using Class Interfaces
	Virtual Instrument
	Importing Type Libraries
	Object Browser
	Creating Object and Initialising Session
	Closing Session
	Execution
	Repeated Capabilities
	Swapping Instruments

	Error Handling

