
 IVI-COM Instrument Driver Programming Guide

©2004 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 1/5

IVI-COM Instrument Driver
Programming Guide

(Windows Scripting Host / VBS Edition)
Mar 2004 Revision 1.0

1- Overview

1-1 Using IVI-COM driver in Windows Scripting Host
Windows Scripting Host (WSH) is a script engine, which comes with Internet Explorer 4.x or
later. This guidebook describes how to use instrument drivers using Visual Basic Script (VBS).

VBS is a BASIC scripting language that is very similar to Visual Basic 6.0 (VB6), however it is
originally unsuitable for use with IVI-COM instrument drivers. This is because VBS only
allows to Late Binding approach for accessing COM servers. Therefore, a COM server that
you want to control has to equip IDispatch interfaces (or automation interfaces).
Unfortunately IVI-COM instrument drivers equip custom interfaces that are directly derived
from IUnknown without IDispatch interfaces and not allowing Early Binding, therefore they
can't be used directly from VBS.

However, there is a special tool that can wrap custom interfaces as if they are IDispatch
interfaces. It is called "Script Adapter". By using this, you can use IVI-COM instrument
drivers from VBS environment.

Notes:

ScriptAdapter is a free software as DLL format and you can obtain it with source codes at
http://homepage.interaccess.com/~hollp/ScriptAdapter.htm. The latest versions of Kikusui IVI-COM
instrument drivers (VER 1.1.x.x or later) all come with the CoScriptAdapter.DLL that is already built,
and it will be automatically installed when you set up the driver.

If you want to set up CoScriptAdapter.DLL manually, you need copy the file to an arbitrary directory on
the hard disk, then perform self-registration (invoke DllRegisterServer) by using a tool such as
REGSVR32.EXE. In the case that CoScriptAdapter.DLL is being installed by the IVI-COM driver setup
program, the manual registration job is not needed. Normally this file is placed in the /Program
Files/IVI/BIN directory.

This guidebook assumes that you use IVI-COM KikusuiPlz instrument driver (for KIKUSUI PLZ-4W/4WA
series electronic load). You can also use IVI-COM instrument drivers for other models in the same
manner.

1-2 Creating Application
Although you can use arbitrary text editors for editing scripts, use Notepad program here. If
you want to debug your scripts, it is recommended to use Visual Basic 6.0 integrated
environment or Visual Studio 2003.NET. Visual Basic 6.0 is a superset language of VBS.

2- Sample Codes

Use Notepad or any arbitrary text editor to write the following codes.

http://homepage.interaccess.com/%7ehollp/ScriptAdapter.htm

 IVI-COM Instrument Driver Programming Guide

©2004 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 2/5

Option Explicit

Dim adapter
Set adapter = CreateObject("ScriptAdapter.Adapter")

Dim ki
Set ki =
adapter.CreateAndWrap("KikusuiPlz.KikusuiPlz").QueryInterface("IKikusuiPlz")
ki.Initialize "ASRL1::INSTR", True, True, ""

Dim kiPws
Set kiPws = ki.Inputs

Dim kiPw
Set kiPw = kiPws.Item("")

kiPw.Function = 1
kiPw.CurrentLimit = 1.2
kiPw.SlewRate = 0.5
kiPw.Enabled = True

ki.Close

VBS scripts can also be embedded in HTML documents. In this case use the <Script> tag to
enclose the script part. A benefit of embedding scripts in the HTML is you can debug with
Visual Studio.NET or Visual InterDev 6.0.

<SCRIPT LANGUAGE="VBS">

' the script begins
Option Explicit
Dim adapter
Set adapter = CreateObject("ScriptAdapter.Adapter")
...
...
ki.Close
' end of script

</SCRIPT>

2-1 Creating Objects
First, you need create the ScriptAdapter object. To create it, use the CreateObject
statement. The Program ID must be "ScriptAdapter.Adapter".

Subsequently, create the instrument driver object. Here you use the CreateAndWrap
method of the ScriptAdapter. This is equivalent to invoke the normal CreateObject
method and then invoke the WrapObject method of the ScriptAdapter. The driver object
created by CreateObject returns IIviDriver interface once, but the ScriptAdapter returns
the wrapped IDispatch interface through the specified COM interface (IKikusuiPlz in this
case).

This part can also be written like below:

 Dim o
 Set o = CreateObject("KikusuiPlz.KikusuiPlz")
 Dim ki

 IVI-COM Instrument Driver Programming Guide

©2004 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 3/5

 Set ki = adapter.WrapObject(o).QueryInterface("IKikusuiPlz")

2-2 Initiating Session
To initiate the instrument session, use the Initialize method. Now let's talk about the
parameters for the Initialize method. Every IVI-COM instrument driver has an
Initialize method that is defined in the IVI specifications. This method has the following
parameters.

Table 2-1 Parameters for Initialize method

Parameter Type Description

ResourceName String VISA resource name string. This is decided according to
the I/O interface and/or address through which the
instrument is connected. If the instrument has the
address 3 on the GPIB board #0, for example, it can be
GPIB0::3::INSTR.

IdQuery Boolean Specifying TRUE performs ID query to the instrument.

Reset Boolean Specifying TRUE resets the instrument settings.

OptionString String Overrides the following settings instead of default:

RangeCheck
Cache
Simulate
QueryInstrStatus
RecordCoercions
Interchange Check

Furthermore you can specify driver-specific options if
the driver supports DriverSetup features.

ResourceName specifies a VISA resource. If IdQuery is TRUE, the driver queries the
instrument identities using a query command such as "*IDN?". If Reset is TRUE, the
driver resets the instrument settings using a reset command such as "*RST".

OptionString has two features. One is what configures IVI-defined behaviours such as
RangeCheck, Cache, Simulate, QueryInstrStatus, RecordCoercions, and
Interchange Check. Another one is what specifies DriverSetup that may be
differently defined by each of instrument drivers. Because the OptionString is a string
parameter, these settings must be written as like the following example:

QueryInstrStatus = TRUE , Cache = TRUE , DriverSetup=12345

Names and setting values for the features being set are case-insensitive. Since the setting
values are Boolean type, you can use any of TRUE, FALSE, 1, and 0. Use commas for
splitting multiple items. If an item is not explicitly specified in the OptionString
parameter, the IVI-defined default value is applied for the item. The IVI-defined default
values are TRUE for RangeCheck and Cache, and FALSE for others.

Some instrument drivers may have special meanings for the DriverSetup parameter. It
can specify items that are not defined by the IVI specifications when invoking the
Initialize method, and its purpose and syntax are driver-specific. Therefore, specifying
the DriverSetup must be at the last part on the OptionString parameter. Because the
contents of DriverSetup are different depending on each driver, refer to driver's Readme
document or online help.

 IVI-COM Instrument Driver Programming Guide

©2004 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 4/5

Notes:

In the above table the parameters are explained as String type or Boolean type, however, the
expression is originally for VB6 that uses strict data types. Variables in VBS are all Variant type.

2-3 Accessing Channels

In general IVI-COM instrument drivers are, if in the case of instrument such as power supply
or electronic load, designed assuming that multiple channels are equipped. Therefore the
instrument driver's root interface (the variable "ki" in the above example) does not control
instrument panel settings normally. To access each of instrument channels, acquire the
reference to the collection through the Outputs(or Inputs) property once, then acquire
the reference to the specified channel through the Item method.

Dim kiPws
Set kiPws = ki.Inputs

Dim kiPw
Set kiPw = kiPwrs.Item("")

As this example uses KikusuiPlz driver to control electronic loads, use the Inputs property.
Since the PLZ-4W/4W series is a mono channel electronic load, use the blank string (zero-
length string) for the channel name to be passed to the Item method. For the instrument
that supports multiple channels, it is necessary to specify an explicit channel name such as
"CH1". See the online-help for detail about what channel names can be actually used.

Once you have acquired the reference to the specific channel, you can perform concrete
instrument settings.

kiPw.Function = 1
kiPw.CurrentLimit = 1.2
kiPw.SlewRate = 0.5
kiPw.Enabled = True

This example sets the function to CC mode, current setting 1.2A, slew rate 0.5 A/µs, and
input ON. Although the Function property originally accepts an integer of enumerated type,
it is necessary to specify an immediate integer value since script environments do not
support symbolic enumeration constants. Function = 1 means CC mode. See the online-
help for detail about properties and methods that you can use.

2-4 Closing Session

Use the Close method to close the instrument driver session.

ki.Close

2-5 Saving and Running Scripts

You can execute the previous codes for the time being. First, save the script you edited with
the Notepad. Then specify the file extension VBS instead of the default TXT (such as
ex01.VBS). Now you can execute the stored VBS file from the Explorer.

As you execute the program, instrument communications immediately start. If the
instrument is actually connected and the Initialize method has succeeded, the script will
immediately finish. If a communication problem has occurred or the VISA library is not
configured properly, a COM exception (WSH runtime error) will be generated.

 IVI-COM Instrument Driver Programming Guide

©2004 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 5/5

Figure 2-1 COM Exception

3- Error Handling

In the previous example, there was no error handling processed. However, setting an out-
of-range value to a property or invoking an unsupported function may generate an error
from the instrument driver. Furthermore, no matter how the application is designed and
implemented robustly, it is impossible to avoid instrument I/O communication errors.

When using IVI-COM instrument drivers, every error generated in the instrument driver is
transmitted to the client program as a COM exception. In case of VBS, COM exceptions can
be handled by using On Error Resume Next statement. You can identify if an error has
been occurred through the Err object.

On Error Resume Next
...
...

kiPw.CurrentLimit = 1.2
If err.Number <> 0 Then
 ' Error has occurred !!!
End If

IVI-COM Instrument Driver Programming Guide
Product names and company names that appear in this guidebook are trademarks or registered
trademarks of their respective companies.
©2004 Kikusui Electronics Corp. All Rights Reserved.

	Overview
	Using IVI-COM driver in Windows Scripting Host
	Creating Application

	Sample Codes
	Creating Objects
	Initiating Session
	Accessing Channels
	Closing Session
	Saving and Running Scripts

	Error Handling

