
 IVI-COM Instrument Driver Programming Guide

IVI-COM Instrument Driver
Programming Guide

 (Excel2000 VBA Edition)
Dec 2003 Revision 1.0

1- Overview

1-1 Using IVI-COM Drivers in Excel 2000 VBA
Excel VBA is one of the most suitable development environments for use with IVI-COM
instrument drivers. Since COM programming style such as using ActiveX controls is very
popular in Excel VBA, many Excel VBA programmers are familiar with using them. Although
an IVI-COM instrument driver is not an ActiveX control, you can develop your programs in
the same manner that when you use generic COM objects.

When using an IVI-COM instrument driver, there are two approaches – using specific
interfaces and using class interfaces. The former is to use interfaces that are specific to an
instrument driver and you can utilise the most of features of the instrument you use. The
later is to utilise instrument class interfaces that are defined in the IVI specifications allowing
to utilise interchangability features, but instrument specific features are restricted.

Notes:

The instrument class to which the instrument driver belongs is documented in Readme.txt for each of
drivers. The Readme document can be viewed from Start button Program IVI folder.

If the instrument driver does not belong to any instrument classes, you can't utilise class interfaces.
This means that you cannot develop applications that utilise interchangability features.

This guidebook assumes that you use Excel 2000. Operations on other Excel versions may be slightly
different.

1-2 Creating An Application Project
This document explains how to develop a form-oriented application using Excel VBA. After
launching Excel, select Tools | Macro | Visual Basic Editor menu to start up the VBA
integrated development environment, then add a user form by selecting Insert | UserForm
menu.

Notes:

This guidebook assumes that you use IVI-COM Kikusui4800 instrument driver (for KIKUSUI PIA4800
series DC Power Supply Controller). You can also use IVI-COM instrument drivers for other models in
the same manner.

2- Example Using Specific Interfaces

Here we introduce an example using specific interfaces. By using specific interfaces, you can
utilise the maximum power of driver features but you have to spoil interchangability.

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 1/13

 IVI-COM Instrument Driver Programming Guide

2-1 Importing Type Libraries
What you should do first after creating a new project is import the type libraries of IVI-COM
instrument drivers you want to use. Choose Tools | References menu to bring up the
References dialogue. Since this example assumes that you use Kikusui4800 IVI-COM driver,
you need check Kikusui4800 (Kikusui) 1.0 Type Library.

Figure 2-1 Importing Type Libraries

Importing type libraries is now complete so your application can use the specific interfaces
provided by the Kikusui4800 IVI-COM driver.

2-2 Object Browser
Once the type libraries have been imported, you can confirm COM interface syntaxes through
the Excel VBA Object Browser. To launch the Object Browser, choose View | Object
Browser menu (or press F2 key).

Figure 2-2 Object Browser

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 2/13

 IVI-COM Instrument Driver Programming Guide

2-3 Creating Object and Initialising Session
First, doubleclick on the design-time form with the mouse. Then the UserForm_Click
event handler having only a skeleton code will be shown, however, select the
UserForm_Initialize event since the code should be written in it. Furthermore, declare
m_dcpwr as a form's data member variable as Kikusui4800Lib.Kikusui4800 type. Do
not forget to write the New operator since you also create an instrument driver object here.

Figure 2-3 UserForm_Initialize handler

Just creating the object does not perform any instrument I/Os. To initiate I/Os with the
instrument, you use the Initialize method. As you type m_dcpwr. in the
UserForm_Initialize handler, the IntelliSense feature of Excel VBA will show the
method/property list for Kikusui4800 type. Here you select Initialize method then
press the Tab key.

Figure 2-4 IntelliSense (Method/Property List)

Furthermore, by typing a space or a left parenthesis "(" after Initialize, IntelliSense will
show all the parameters for the method.

Figure 2-5 IntelliSense (Parameter List)

Now let's talk about the parameters for the Initialize method. Every IVI-COM
instrument driver has an Initialize method that is defined in the IVI specifications. This
method has the following parameters.

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 3/13

 IVI-COM Instrument Driver Programming Guide

Table 2-1 Parameters for Initialize method

Parameter Type Description

ResourceName String VISA resource name string. This is decided according to
the I/O interface and/or address through which the
instrument is connected. If the instrument has the
address 3 on the GPIB board #0, for example, it can be
GPIB0::3::INSTR.

IdQuery Boolean Specifying TRUE performs ID query to the instrument.

Reset Boolean Specifying TRUE resets the instrument settings.

OptionString String Overrides the following settings instead of default:

RangeCheck
Cache
Simulate
QueryInstrStatus
RecordCoercions
Interchange Check

Furthermore you can specify driver-specific options if
the driver supports DriverSetup features.

ResourceName specifies a VISA resource. If IdQuery is TRUE, the driver queries the
instrument identities using a query command such as "*IDN?". If Reset is TRUE, the
driver resets the instrument settings using a reset command such as "*RST".

OptionString has two features. One is what configures IVI-defined behaviours such as
RangeCheck, Cache, Simulate, QueryInstrStatus, RecordCoercions, and
Interchange Check. Another one is what specifies DriverSetup that may be
differently defined by each of instrument drivers. Because the OptionString is a string
parameter, these settings must be written as like the following example:

QueryInstrStatus = TRUE , Cache = TRUE , DriverSetup=12345

Names and setting values for the features being set are case-insensitive. Since the setting
values are Boolean type, you can use any of TRUE, FALSE, 1, and 0. Use commas for
splitting multiple items. If an item is not explicitly specified in the OptionString
parameter, the IVI-defined default value is applied for the item. The IVI-defined default
values are TRUE for RangeCheck and Cache, and FALSE for others.

Some instrument drivers may have special meanings for the DriverSetup parameter. It
can specify items that are not defined by the IVI specifications when invoking the
Initialize method, and its purpose and syntax are driver-specific. Therefore, specifying
the DriverSetup must be at the last part on the OptionString parameter. Because the
contents of DriverSetup are different depending on each driver, refer to driver's Readme
document or online help.

Now try to write Initialize call. The OptionString parameter is optional and you can
skip it.

Private Sub UserForm_Initialize()
 m_dcpwr.Initialize "GPIB0::3::INSTR", True, True
End Sub

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 4/13

 IVI-COM Instrument Driver Programming Guide

2-4 Closing Session

To close the instrument driver session, use the Close method. Since this example wrote the
Initialize method call in the UserForm_Initialize handler, it is better to write
Close method call in the UserForm_Terminate handler.

Option Explicit
Private m_dcpwr As New Kikusui4800Lib.Kikusui4800

Private Sub UserForm_Initialize()
 m_dcpwr.Initialize "GPIB0::3::INSTR", True, True
End Sub

Private Sub UserForm_Terminate()
 m_dcpwr.Close
End Sub

2-5 Execution

You can execute the previous codes for the time being. Since the Initialize method is
invoked in the UserForm_Initialize handler, communications with the instrument
immediately start as you launch the program. If the instrument is actually connected and
the Initialize method call has succeeded, the form screen appears. If a communication
problem has occurred or the VISA library is not configured properly, a COM exception (VBA
runtime error) will be generated.

Figure 2-6 COM exception

2-6 Repeated Capabilities

In case of Kikusui4800 IVI-COM driver, output settings for the DC power supplies are
performed through the Output interfaces as the same concept defined by the IviDCPwr class.
In case of specific interfaces provided by the Kikusui4800 driver, they are the
IKikusui4800Output and IKikusui4800Outputs interfaces. An instrument driver that
is compliant with the IviDCPwr class is designed assuming that the instrument is a multi-track
power supply equipping multiple output channels.

These COM interfaces have the same name with an exception of differences between
singular and plural forms. An interface having this kind of plural name is generally called
"repeated capabilities" in the IVI specifications. Repeated capabilities are something like a
container that is defined for handling equivalent or similar multiple objects, and a COM
interface having a plural name such as IKikusui4800Outputs normally has the Count,
Name, and Item properties (all are read-only). Plus, a singular object can be referenced
through the Item property.

First look at the following example, which controls an output channel identified by the name
"N5!C1" on the power supply instrument (actually a Kikusui PIA4800 series DC Power
Supply Controller) hosted by the Kikusui4800 IVI-COM driver. This example writes the codes
in the event handler assuming you put a command button (CommandButton1) on the form.

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 5/13

 IVI-COM Instrument Driver Programming Guide

Private Sub CommandButton1_Click()
 Dim out As Kikusui4800Lib.IKikusui4800Output
 Set out = m_dcpwr.Outputs.Item("N5!C1")

 out.VoltageLevel = 10.5
 out.CurrentLimit = 1.2
 out.Enabled = True
End Sub

Once the IKikusui4800Output interface has been acquired, there is no difficulty at all.
The VoltageLevel and the CurrentLimit properties set voltage level and current limit
settings respectively. The Enabled property switches output ON/OFF state.

Mind the grammar for acquiring the IKikusui4800Output interface. This example here
acquires the IKikusui4800Outputs interface though the Output property of the
IKikusui4800 interface, then acquires IKikusui4800Output interface by using the
Item property.

 Dim out As Kikusui4800Lib.IKikusui4800Output
 Set out = m_dcpwr.Outputs.Item("N5!C1")

The codes can also be written as like below.

 Dim outs As Kikusui4800Lib.IKikusui4800Outputs
 Dim out As Kikusui4800Lib.IKikusui4800Output
 Set outs = m_dcpwr.Outputs
 Set out = outs.Item("N5!C1")

Now mind the parameter passed to the Item property. This parameter specifies the name
of the single Output object to be referenced. Actual available names (Output Name) are
however different depending on drivers. For example, Kikusui4800 IVI-COM driver uses an
expression like "N1!C1" specifying NODE and CH. However other drivers, even if being
IviDCPwr class-compliant, may have different names. One instrument driver, for example,
may use an expression like "Track1". Although available names on a particular instrument
driver are normally documented in the driver's online help, you can also check them out by
writing some test codes shown below.

 Dim outs As Kikusui4800Lib.IKikusui4800Outputs
 Set outs = m_dcpwr.Outputs

 Dim cnt As Long
 Dim ndx As Long
 cnt = outs.Count
 For ndx = 1 To cnt
 Dim strName As String
 strName = outs.Name(ndx)
 Debug.Print strName
 Next ndx

The Count property returns number of single objects that the repeated capabilities have.
The Name property returns the name of single object for the given index. The name is
exactly the one that can be passed to the Item property as a parameter. In the above
example, the codes iterate from the index 1 to Count by using the For/Next statement.
Mind that the index numbers for the Name parameter is one-based, not zero-based.

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 6/13

 IVI-COM Instrument Driver Programming Guide

3- Example Using Class Interfaces

Now we explain how to use class interfaces. By using class interfaces, you can swap the
instruments without recompiling/relinking your application codes. In this case, however, IVI-
COM instrument drivers for both pre-swap and post-swap models must be provided, and
these drivers both must belong to the same instrument class. There is no interchangability
available between different instrument classes.

3-1 Virtual Instrument
What you have to do before creating an application that utilises interchangability features is
create a virtual instrument. To realise interchangability features, you should not write codes
that are very specific to a particular IVI-COM instrument driver (e.g. creating an object
instance directly as Kikusui4800 type) and should not write a specific VISA resource name
such as "GPIB0::3::INSTR". Writing them directly in the application spoils interchangability.

Instead, the IVI-COM specifications define methods to realise interchangability by placing an
external IVI configuration store. The application indirectly selects an instrument driver
according to contents of the IVI Configuration Store, and accesses the indirectly loaded
driver through the class interfaces.

The IVI Configuration Store is normally /Program Files/IVI/Data/IviConfigurationStore.XML
file and is accessed through the IVI Configuration Server DLL. This DLL is mainly used by
IVI-COM instrument drivers and some configuration tools provided by instrument driver
vendors, not by end-user applications. KIKUSUI provides a configuration tool called Kikusui
IVI Config Utility that allows you to configure virtual instrument settings.

Notes:

As for how to configure virtual instruments by using Kikusui IVI Config Utility, refer to "Programming
Guide, (IVI Config Utility Edition)."

This guidebook assumes that a virtual instrument having the logical name "MySupply" is
already created, using Kikusui4800 driver, and using a VISA resource "GPIB0::3::INSTR".

3-2 Importing Type Libraries
What you should do first after creating a new project is import the type library of IVI-COM
class interfaces that you want to use. Choose Tools | References menu to bring up the
References dialogue. Since we use IviDCPwr class interfaces, check IviDCPwr 2.0
TypeLibrary. Furthermore, make sure to check IviDriver 1.0 Type Library and
IviSessionFactory 1.0 TypeLibrary regardless instrument classes you use.

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 7/13

 IVI-COM Instrument Driver Programming Guide

Figure 3-1 Importing Type Libraries

Importing type libraries are now completed. Your application will be able to use arbitrary
instrument drivers through the IviDCPwr class interfaces.

3-3 Object Browser
Once the type libraries have been imported, you can confirm COM interface syntaxes through
the Visual Basic 6.0 Object Browser. To launch the Object Browser, choose View | Object
Browser menu (or press F2 key).

Figure 3-2 Object Browser

3-4 Creating Object and Initialising Session
First, doubleclick on the design-time form with the mouse. Then the
UserForm_Initialize event handler having only a skeleton code will be shown. Declare
m_dcpwr as a form's data member variable as IviDCPwrLib.IIviDCPwr type. A type

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 8/13

 IVI-COM Instrument Driver Programming Guide

that begins with capital "I" such as IIviDCPwr is in general a COM interface, therefore you
cannot create an object with the New operator.

Figure 3-3 UserForm_Initialize handler

Next you must create an instrument driver object. To create an instrument driver object, use
IVI Session Factory. The IVI Session Factory is a DLL server that comes with the IVI Shared
Components. It extracts configuration information of the virtual instrument specified by the
given logical name, loads the appropriate instrument driver software, then creates an
instrument driver object.

Private Sub UserForm_Initialize()

 Dim sf As New IVISESSIONFACTORYLib.IviSessionFactory
 Set m_dcpwr = sf.CreateDriver("MySupply")

 m_dcpwr.Initialize "MySupply", True, True

End Sub

The example here creates an IviSessionFactory object and then creates an instrument
object with the CreateDriver method. The parameter "MySupply" must already be
configured as a valid logical name. The instrument driver DLL to be loaded will be what
specified by the virtual instrument MySupply.

After creating the driver object, invoke the Initialize method. Although parameters of
the Initialize method are exactly the same as the case of using specific interfaces, you
should specify the logical name for the ResourceName parameter instead of specifying a
VISA resource.

Again let 's talk about parameters of the Initialize method. Every IVI-COM instrument
driver has an Initialize method that is defined by the IVI specifications. This method
has the following parameters.

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 9/13

 IVI-COM Instrument Driver Programming Guide

Table 3-1 Parameters for Initialize method

Parameter Type Description

ResourceName String VISA resource name string. This is decided according to
the I/O interface and/or address through which the
instrument is connected. If the instrument has the
address 3 on the GPIB board #0, for example, it can be
GPIB0::3::INSTR.

If specifying a logical name, the VISA resource that is
described in the logical name's Hardware Asset
configuration will be indirectly specified.

IdQuery Boolean Specifying TRUE performs ID query to the instrument.

Reset Boolean Specifying TRUE resets the instrument settings.

OptionString String Overrides the following settings instead of default:

RangeCheck
Cache
Simulate
QueryInstrStatus
RecordCoercions
Interchange Check

Furthermore you can specify driver-specific options if
the driver supports DriverSetup features.

In general, applications that are aware of interchangability use a logical name for the
ResourceName parameter rather than a VISA resource. Actually it is possible to specify a
VISA resource, however, doing so slightly spoils abstraction of virtual instrument.

If IdQuery is TRUE, the driver queries the instrument identities using a query command
such as "*IDN?". If Reset is TRUE, the driver resets the instrument settings using a reset
command such as "*RST".

OptionString has two features. One is what configures IVI-defined behaviours such as
RangeCheck, Cache, Simulate, QueryInstrStatus, RecordCoercions, and
Interchange Check. Another one is what specifies DriverSetup that may be
differently defined by each of instrument drivers. Because the OptionString is a string
parameter, these settings must be written as like the following example:

QueryInstrStatus = TRUE , Cache = TRUE , DriverSetup=12345

Names and setting values for the features being set are case-insensitive. Since the setting
values are Boolean type, you can use any of TRUE, FALSE, 1, and 0. Use commas for
splitting multiple items. If an item is not explicitly specified in the OptionString
parameter, the IVI-defined default value is applied for the item. The IVI-defined default
values are TRUE for RangeCheck and Cache, and FALSE for others.

Some instrument drivers may have special meanings for the DriverSetup parameter. It
can specify items that are not defined by the IVI specifications when invoking the
Initialize method, and its purpose and syntax are driver-specific. Therefore, specifying
the DriverSetup must be at the last part on the OptionString parameter. Because the
contents of DriverSetup are different depending on each driver, refer to driver's Readme
document or online help.

Now try to write Initialize call. The OptionString parameter is optional and you can
skip it.

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 10/13

 IVI-COM Instrument Driver Programming Guide

 m_dcpwr.Initialize "MySupply", True, True

3-5 Closing Session

To close the instrument driver session, use the Close method. Since this example wrote the
Initialize method call in the UserForm_Initialize handler, it is better to write
Close method call in the UserForm_Terminate handler.

Option Explicit
Private m_dcpwr As IviDCPwrLib.IIviDCPwr

Private Sub UserForm_Initialize()

 Dim sf As New IVISESSIONFACTORYLib.IviSessionFactory
 Set m_dcpwr = sf.CreateDriver("MySupply")

 m_dcpwr.Initialize "MySupply", True, True

End Sub

Private Sub UserForm_Termainate()
 m_dcpwr.Close
End Sub

3-6 Execution

You can execute the previous codes for the time being. Since the Initialize method is
invoked in the UserForm_Initialize handler, communications with the instrument
immediately start as you launch the program. If the instrument is actually connected and
the Initialize method call has succeeded, the form screen appears. If a communication
problem has occurred or the VISA library is not configured properly, a COM exception (Visual
Basic 6.0 runtime error) will be generated.

Figure 3-4 COM exception

3-7 Repeated Capabilities

In case of IviDCPwr class interfaces, output settings for the DC power supplies are performed
through the Output interfaces. The interfaces used here are IIviDCPwrOutput and
IIviDCPwrOutputs. An instrument driver that is compliant with the IviDCPwr class is
designed assuming that the instrument is a multi-track power supply equipping multiple
output channels.

These COM interfaces have the same name with an exception of differences between
singular and plural forms. An interface having this kind of plural name is generally called
"repeated capabilities" in the IVI specifications. Repeated capabilities are something like a
container that is defined for handling equivalent or similar multiple objects, and a COM
interface having a plural name such as IIviDCPwrOutputs normally has the Count, Name,

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 11/13

 IVI-COM Instrument Driver Programming Guide

and Item properties (all are read-only). Plus, a singular object can be referenced through
the Item property.

 First look at the following example, which controls an output channel identified by the name
"Track_A" registered as in the virtual instrument's virtual name. This example writes the
codes in the event handler assuming you put a command button (CommandButton1) on the
form.

Private Sub CommandButton1_Click()
 Dim out As IviDCPwrLib.IIviDCPwrOutput
 Set out = m_dcpwr.Outputs.Item("Track_A")

 out.VoltageLevel = 10.5
 out.CurrentLimit = 1.2
 out.Enabled = True
End Sub

Once the IIviDCPwrOutput interface has been acquired, there is no difficulty at all. The
VoltageLevel and the CurrentLimit properties set voltage level and current limit
settings respectively. The Enabled property switches output ON/OFF state.

Mind the grammar for acquiring the IIviDCPwrOutput interface. This example here
acquires the IIviDCPwrOutputs interface though the Output property of the IIviDCPwr
interface, then acquires IIviDCPwrOutput interface by using the Item property.

 Dim out As IviDCPwrLib.IIviDCPwrOutput
 Set out = m_dcpwr.Outputs.Item("Track_A")

The codes can also be written as like below.

 Dim outs As IviDCPwrLib.IIviDCPwrOutputs
 Dim out As IviDCPwrLib.IIviDCPwrOutput
 Set outs = m_dcpwr.Outputs
 Set out = outs.Item("Track_A")

Now mind the parameter passed to the Item property. This parameter specifies the name
of the single Output object to be referenced. In the example that used specific interfaces,
we specified a name that was very dependent upon each driver (physical name), however we
use a different approach. Because a physical name that depends on a particular instrument
driver should not be used, we specify a virtual name instead.

3-8 Swapping Instruments

In the previous examples, we used the Kikusui4800 instrument driver for the virtual
instrument configurations. Now what will happen if you replace the instrument with the one
that is hosted by the AgilentE36xx driver? In this case you do not have to recompile/relink
your application, but you need change the virtual instrument configurations.

The configurations you have to change are basically Software Module selection on the Driver
Session tab, and virtual name mappings on the Virtual Names tab (because physical names
of the map target are changed). Replacing instruments may not allow using the same I/O
interface (such as changing from a GPIB-only instrument to an RS232-only instrument), so
you may have to change IO Resource Descriptor on the Hardware Asset tab as need.

Notes:

As for how to configure virtual instruments by using Kikusui IVI Config Utility, refer to "Programming
Guide, (IVI Config Utility Edition)."

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 12/13

 IVI-COM Instrument Driver Programming Guide

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 13/13

4- Error Handling

In the previous examples, there was no error handling processed. However, setting an out-
of-range value to a property or invoking an unsupported function may generate an error
from the instrument driver. Furthermore, no matter how the application is designed and
implemented robustly, it is impossible to avoid instrument I/O communication errors.

When using IVI-COM instrument drivers, every error generated in the instrument driver is
transmitted to the client program as a COM exception. In case of Excel VBA, a COM
exception can be handled by using On Error Goto statement.

Now let's change the example of setting voltage and current as follows.

Private Sub CommandButton1_Click()

 On Error GoTo DRIVER_ERR:

 Dim out As Kikusui4800Lib.IKikusui4800Output
 Set out = m_dcpwr.Outputs.Item("N5!C1")

 out.VoltageLevel = 10.5
 out.CurrentLimit = 1.2
 out.Enabled = True

 Exit Sub
DRIVER_ERR:
 MsgBox Err.Description, vbOKOnly, "Err 0x" & Hex(Err.Number)

End Sub

In this example, errors are handled by using On Error Goto statement. For example, if
the name passed to the Item property is wrong, if an out-of-range value is passed to
VoltageLevel, or if an instrument communication error is generated, a COM exception will
be generated in the instrument driver. Above example just displays a simple message box
when an exception has occurred.

Detail about the error (COM exception) can be acquired through the Err object, which is
defined in the Excel VBA. This example sets the error code (hexadecimal) obtained from
Number property to the message box caption, and sets the description string obtained from
the Description property to the main body text.

Figure 4-1 Message box by error handling

IVI-COM Instrument Dr ver Programm ng Guide i i
 t i r

 .

Product names and company names that appear in his gu debook are t ademarks or registered
trademarks of their respective companies
©2003 Kikusui Electronics Corp. All Rights Reserved.

	Overview
	Using IVI-COM Drivers in Excel 2000 VBA
	Creating An Application Project

	Example Using Specific Interfaces
	Importing Type Libraries
	Object Browser
	Creating Object and Initialising Session
	Closing Session
	Execution
	Repeated Capabilities

	Example Using Class Interfaces
	Virtual Instrument
	Importing Type Libraries
	Object Browser
	Creating Object and Initialising Session
	Closing Session
	Execution
	Repeated Capabilities
	Swapping Instruments

	Error Handling

