
 IVI-COM Instrument Driver Programming Guide

©2004 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 1/6

IVI-COM Instrument Driver
Programming Guide

 (VEE Edition)
 Mar 2004 Revision 1.0

1- Overview

1-1 Using IVI-COM drivers in VEE
Originally, Agilent VEE is not suitable for use with IVI-COM instrument drivers. As a generic
approach for utilising COM servers in VEE, the script engine that is a part of Formula
functionality is used. In this case, however, the Late-Binding approach can only be used.
Therefore, a COM server that you want to control has to equip IDispatch interfaces (or
automation interfaces). Unfortunately IVI-COM instrument drivers equip custom interfaces
that are directly derived from IUnknown without having any IDispatch interfaces, therefore
they can't be used directly from VEE. At this point in time, the condition for using IVI-COM
instrument drivers from VEE looks like the restriction on using them in Windows Scripting
Host (WSH) environment.

However, there is a special tool that can wrap custom interfaces as if they are IDispatch
interfaces. It is called "Script Adapter". By using this, you can use IVI-COM instrument
drivers from VEE environment.

Notes:

How to use ScriptAdapteris is also introduced in the IVI-COM Instrument Driver Programming Guide
(Windows Scripting Host / VBS Edition).

ScriptAdapter is a free software as DLL format and you can obtain it with source codes at
http://homepage.interaccess.com/~hollp/ScriptAdapter.htm. The latest versions of Kikusui IVI-COM
instrument drivers (VER 1.1.x.x or later) all come with the CoScriptAdapter.DLL that is already built,
and it will be automatically installed when you set up the driver.

If you want to set up CoScriptAdapter.DLL manually, you need copy the file to an arbitrary directory on
the hard disk, then perform self-registration (invoke DllRegisterServer) by using a tool such as
REGSVR32.EXE. In the case that CoScriptAdapter.DLL is being installed by the IVI-COM driver setup
program, the manual registration job is not needed. Normally this file is placed in the /Program
Files/IVI/BIN directory.

This guidebook assumes that you use IVI-COM KikusuiPlz instrument driver (for KIKUSUI PLZ-4W/4WA
series electronic load). You can also use IVI-COM instrument drivers for other models in the same
manner.

2- Creating Application

As you launch VEE, an empty project with the "Main" screen will appear.

2-1 Importing Type Library
What you should do first is import the type library for the Script Adapter, by adding object
references. Choose Device | ActiveX Automation References menu to show the
ActiveX Automation References dialogue. Select "CoScriptAdapter 1.0 Type Library"

http://homepage.interaccess.com/%7ehollp/ScriptAdapter.htm

 IVI-COM Instrument Driver Programming Guide

©2004 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 2/6

from the list. If it is not found in the list, click the Browse button and search for the
CoScriptAdapter.DLL. The DLL is normally placed in the /Program Files/IVI/BIN directory.

Figure 2-1 Importing CoScriptAdapter.DLL Type Library

2-2 Declaring Variables
The Formula functionality of VEE allows you to write scripts that are almost similar to VBS,
however you can't declare variables with the Dim statement. Variables must be declared in
advance in the VEE environment.

From the Main screen, choose Data | Variable | Declare Variable menu, then declare
the following four variables.

Table 2-1 4 Variables

Name Type Object Type

adapter Object Library: CoScriptAdapter
Class: ScriptAdapter
Events: Not Enabled

ki Object Do not specify

kiPws Object Do not specify

kiPw Object Do not specify

2-3 Adding Formulas
Choose Data | Formula menu to add three Formulas, which of each has the Title setting
"Open, "Settings", and "Close". The example described here does not use the input
parameter "A" for simplicity. Choose Delete Terminal | Input on the context menu to
delete unnecessary input parameters.

2-4 Writing Scripts
Write the following script in the "Open" Formula.

 IVI-COM Instrument Driver Programming Guide

©2004 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 3/6

Set adapter = CreateObject("ScriptAdapter.Adapter");
Set ki = adapter.CreateAndWrap(
 "KikusuiPlz.KikusuiPlz").QueryInterface("IKikusuiPlz");
ki.Initialize("ASRL1::INSTR", True, True, "");
Set kiPws = ki.Inputs;
Set kiPw = kiPws.Item("");

Write the following script in the "Settings" Formula.

kiPw.Function = 1;
kiPw.CurrentLimit = 1.2;
KiPw.SlewRate = 0.5;
kiPw.Enabled = True;

Write the following script in the "Close" Formula.

ki.Close();

After writing the scripts, wire them in the Open Settings Close order.

Figure 2-2 Writing Scripts

 IVI-COM Instrument Driver Programming Guide

©2004 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 4/6

3- Description

3-1 Creating Objects
In the application, it is necessary to create the ScriptAdapter object first. The object is
automatically created by the variable declaration, therefore there is no need to write the
script.

Subsequently, create the instrument driver object. Here you use the CreateAndWrap
method of the ScriptAdapter. This is equivalent to invoke the normal CreateObject
method and then invoke the WrapObject method of the ScriptAdapter. The driver object
created by CreateObject returns IIviDriver interface once, but the ScriptAdapter returns
the wrapped IDispatch interface through the specified COM interface (IKikusuiPlz in this
case).

3-2 Initiating Session
To initiate the instrument session, use the Initialize method. Now let's talk about the
parameters for the Initialize method. Every IVI-COM instrument driver has an
Initialize method that is defined in the IVI specifications. This method has the following
parameters.

Table 3-1 Parameters for Initialize method

Parameter Type Description

ResourceName String VISA resource name string. This is decided according to
the I/O interface and/or address through which the
instrument is connected. If the instrument has the
address 3 on the GPIB board #0, for example, it can be
GPIB0::3::INSTR.

IdQuery Boolean Specifying TRUE performs ID query to the instrument.

Reset Boolean Specifying TRUE resets the instrument settings.

OptionString String Overrides the following settings instead of default:

RangeCheck
Cache
Simulate
QueryInstrStatus
RecordCoercions
Interchange Check

Furthermore you can specify driver-specific options if
the driver supports DriverSetup features.

ResourceName specifies a VISA resource. If IdQuery is TRUE, the driver queries the
instrument identities using a query command such as "*IDN?". If Reset is TRUE, the
driver resets the instrument settings using a reset command such as "*RST".

OptionString has two features. One is what configures IVI-defined behaviours such as
RangeCheck, Cache, Simulate, QueryInstrStatus, RecordCoercions, and
Interchange Check. Another one is what specifies DriverSetup that may be
differently defined by each of instrument drivers. Because the OptionString is a string
parameter, these settings must be written as like the following example:

QueryInstrStatus = TRUE , Cache = TRUE , DriverSetup=12345

 IVI-COM Instrument Driver Programming Guide

©2004 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 5/6

Names and setting values for the features being set are case-insensitive. Since the setting
values are Boolean type, you can use any of TRUE, FALSE, 1, and 0. Use commas for
splitting multiple items. If an item is not explicitly specified in the OptionString
parameter, the IVI-defined default value is applied for the item. The IVI-defined default
values are TRUE for RangeCheck and Cache, and FALSE for others.

Some instrument drivers may have special meanings for the DriverSetup parameter. It
can specify items that are not defined by the IVI specifications when invoking the
Initialize method, and its purpose and syntax are driver-specific. Therefore, specifying
the DriverSetup must be at the last part on the OptionString parameter. Because the
contents of DriverSetup are different depending on each driver, refer to driver's Readme
document or online help.

3-3 Accessing Channels

In general IVI-COM instrument drivers are, if in the case of instrument such as power supply
or electronic load, designed assuming that multiple channels are equipped. Therefore the
instrument driver's root interface (the variable "ki" in the above example) does not control
instrument panel settings normally. To access each of instrument channels, acquire the
reference to the collection through the Outputs(or Inputs) property once, then acquire
the reference to the specified channel through the Item method.

Set kiPws = ki.Inputs;
Set kiPw = kiPws.Item("");

As this example uses KikusuiPlz driver to control electronic loads, use the Inputs property.
Since the PLZ-4W/4W series is a mono channel electronic load, use the blank string (zero-
length string) for the channel name to be passed to the Item method. For the instrument
that supports multiple channels, it is necessary to specify an explicit channel name such as
"CH1". See the online-help for detail about what channel names can be actually used.

Once you have acquired the reference to the specific channel, you can perform concrete
instrument settings.

kiPw.Function = 1;
kiPw.CurrentLimit = 1.2;
kiPw.SlewRate = 0.5;
kiPw.Enabled = True;

This example sets the function to CC mode, current setting 1.2A, slew rate 0.5 A/µs, and
input ON. Although the Function property originally accepts an integer of enumerated type,
it is necessary to specify an immediate integer value since script environments do not
support symbolic enumeration constants. Function = 1 means CC mode. See the online-
help for detail about properties and methods that you can use.

3-4 Closing

Use the Close method to close the instrument driver session.

ki.Close();

3-5 Running Scripts

You can execute the previous code for the time being. Save the VEE project and then
execute the program by selecting Debug | Run/Resume menu.

As you execute the program, instrument communications immediately start. If the
instrument is actually connected and the Initialize method has succeeded, the script will

 IVI-COM Instrument Driver Programming Guide

©2004 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 6/6

immediately finish. If a communication problem has occurred or the VISA library is not
configured properly, a COM exception (runtime error) will be generated.

Figure 3-1 COM Exception

IVI-COM Instrument Driver Programming Guide
Product names and company names that appear in this guidebook are trademarks or registered
trademarks of their respective companies.
©2004 Kikusui Electronics Corp. All Rights Reserved.

	Overview
	Using IVI-COM drivers in VEE

	Creating Application
	Importing Type Library
	Declaring Variables
	Adding Formulas
	Writing Scripts

	Description
	Creating Objects
	Initiating Session
	Accessing Channels
	Closing
	Running Scripts

