
 IVI-COM Instrument Driver Programming Guide

IVI-COM Instrument Driver
Programming Guide

 (IVI Config Utility Edition)
Dec 2003 Revision 1.0

1- Overview

One of features of IVI instrument drivers is the interchangability function. By using the
interchangability function, applications do not have to be recompiled or re-linked to continue
to work even if an instrument has been swapped with other model.

To utilise the interchangability function, there must be IVI-COM instrument drivers provided
for both pre-swapped and post-swapped instruments. Plus, they both must be IVI-COM
class-compliant drivers that comply with the same instrument class. There are no
interchangability capabilities between different instrument classes. Also, an application that
utilises the interchangability function must indirectly access the instrument drivers through
the class interfaces, not through the driver-supplied specific interfaces.

When using the interchangability function, detailed setups regarding the instrument (and its
driver) being actually used have to be placed in an external storage outside the application.
This external storage is what called the IVI Configuration Store. In the IVI Configuration
Store, information about installed instrument drivers and virtualised instruments associated
with them is placed.

In this document, we explain how to use the Kikusui IVI Config Utility, which configures
virtual instrument settings.

1-1 Virtual Instrument
What you have to do before creating an application that utilises interchangability function is
create a virtual instrument. In your application, you should not write codes that are specific
to a particular IVI-COM instrument driver (e.g. creating an object directly with Kikusui4800
type, or writing a VISA resource name such as "GPIB0::3::INSTR"). Writing these kinds of
codes spoils interchangability.

Instead, IVI-COM specifications provide interchangability mechanisms by placing the IVI
Configuration Store outside instrument drivers and applications. An application indirectly
select an instrument driver according to the contents of the IVI Configuration Store, and
accesses the indirectly loaded instrument driver through the class interfaces that are
independent of particular instrument.

IVI Configuration Store is normally the /Program Files/IVI/Data/IviConfigurationStore.XML file
and accessed through the IVI Configuration Server DLL. Software that utilise this DLL are
mainly IVI-COM instrument drivers and configuration tools provided by instrument and/or
instrument driver vendors. Applications normally do not use it. Kikusui provides a
configuration tool - Kikusui IVI Config Utility. By using this, you can configure virtual
instrument settings.

Notes:

A virtual instrument is identified by a Logical Name.

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 1/8

 IVI-COM Instrument Driver Programming Guide

This guidebook assumes that you use the IVI-COM Kikusui4800 Instrument Drivers (for Kikusui
PIA4800 series DC Power Supply Controller). You can also use other versions of IVI-COM instrument
drivers in the same manner.

2- Kikusui IVI Config Utility

2-1 Launching The Utility
From the [Start] button Programs IVI Kikusui IVI Config Utility menu, you can
launch the Kikusui IVI Config Utility. The start-up screen looks like the following picture.
The left side is a tree-view, which displays two hierarchies. The upper side is Software
Modules on which all the installed IVI-COM instrument drivers are displayed. Drivers from
other than Kikusui, such as from Agilent Technologies or Tektronix, are also displayed. The
lower side is Logical Names on which all the available virtual instruments are displayed. In
the following picture, a virtual instrument having a logical name Kikusui4800 is configured.

Figure 2-1 Kikusui IVI Config Utility (Main Screen)

The logical name Kikusui4800 represents the default virtual instrument, which was created
when the Kikusui4800 IVI-COM driver was installed. Although you can customise it, this
document here provides an example for how to create new one.

Notes:

By setting up an IVI-COM instrument driver, the default virtual instrument (logical name) may be
created. This is normally provided as an example for creating a virtual instrument. May be good to
utilise it by changing the logical name.

Depending on IVI-COM driver versions or vendors, such default virtual instrument may not be provided.

2-2 Adding A Logical Name
Right-click the part where the label Logical Names is shown on the tree to make the
context menu appear, then select Add Logical Name…. The Add Logical Name dialog
appears.

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 2/8

 IVI-COM Instrument Driver Programming Guide

Figure 2-2 Adding Logical Name

Here you give a virtual instrument name that you want to create. Letters that can be used
for a logical name are alphanumeric (A..Z, a..z, 0..9), underscore (_), and exclamation (!)
only. Logical names that already exit cannot be used. Logical names are case-sensitive.

As an example, give the name "MySupply". Then this name is added to Logical Names
and displayed. After creating a virtual instrument giving a logical name, the next steps are
configuration work on the tab pages - Logical Name, Driver Session, Hardware Asset,
and Virtual Names.

2-3 Configuration On Tab Pages

Logical Name Tab

Figure 2-3 Logical Name Tab

What you can configure on this page is Description only. It has no special meaning for
functionality therefore skip it here. You can leave it empty.

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 3/8

 IVI-COM Instrument Driver Programming Guide

Driver Session Tab

Figure 2-4 Driver Session Tab

Description has no special meaning for functionality so you can leave it empty. Software
Module selects a software module enumerated by the combobox. This is a very important
setting that decides what instrument driver is used for hosting the virtual instrument. This
example uses Kikusui4800.Software as the hosting driver, therefore select it. You must
select at least one item.

Figure 2-5 Software Module Selection

At Default Operation, you configure ON/OFF settings for Range Check, Cache,
Simulate, Query Instr Status, Record Coercions, and Interchange Check, plus the
Driver Setting string. The contents that you configure here are used as the default settings
when the application invokes the Initialize method.

Figure 2-6 Default Operation Settings

If Range Check is enabled, the driver validates the given input value for property's put_
access and the given input parameters for method calls. This feature works as a pre-

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 4/8

 IVI-COM Instrument Driver Programming Guide

verification work before sending out-of-range values to the instrument. This is useful when
the application is under debugging.

If Cache is enabled, the driver avoids unnecessary I/Os. For example, if a setting value is
already sent to the instrument, it is redundant to send the same value again. By avoiding
these wasting I/Os, application's performance increases.

If Simulate is enabled, the driver does not perform I/O to the instrument, and returns
simulated values for output parameters. This is useful when the actual instrument set is not
ready for application development.

If Query Instr Status is enabled, the driver queries the instrument status at the end of
each method call or property access that performs I/O to the instrument. If an instrument
error is reported, you can use the ErrorQuery method to retrieve error messages from the
instrument. This is useful when the application is under debugging, but it is better to be
disabled after the development is completed.

If Record Coercions is enabled, the driver keeps a list of the value coercions regarding
LONG and DOUBLE values. If the driver does not support coercion recording, this setting is
ignored.

If Interchange Check is enabled, the driver maintains a record of interchangability
warnings. If the driver does not support interchangability checking, this setting is ignored.

Hardware Asset Tab

Figure 2-7 Hardware Asset Tab

Description has no special meaning for functionality so you can leave it empty. The
combobox of IO Resource Descriptor enumerates VISA I/O resources that are currently
available. Select an appropriate item. Instruments that are not connected or connected
through the TCP/IP are not shown. In this case, input a valid VISA resource directly. When
the application invokes Initialize method passing the logical name as a parameter, the
driver performs instrument I/Os though the VISA resource configured here.

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 5/8

 IVI-COM Instrument Driver Programming Guide

Figure 2-8 IO Resource Descriptor Selection

If you click the Check Instrument button, you can perform a simple I/O test using the
VISA COM library.

Virtual Name Tab

Figure 2-9 Virtual Names Tab

On this page, you configure mappings between virtual names and physical names. The
settings here are used for identifications of objects provided by Repeated Capabilities
feature.

Repeated Capabilities are a concept that treats the same or identical multiple objects as if
they are in an array or a container. For example, an instrument driver that complies with the
IviDCPwr class is designed as a multi-track DC power supply driver assuming that the
instrument has multiple output channels. Another example is, an instrument driver that
complies with the IviScope class is designed as an oscilloscope driver assuming that the
instrument has multiple trace channels. Similarly it is recommended to use Repeated
Capabilities in the case that there are identical multiple objects, according to the IVI
specifications.

Although the Kikusui4800 IVI-COM driver that complies with IviDCPwr class identifies output
objects by name having a naming convention like "N5!C1", such names are driver-specific.
This kind of name is called Physical Name. However an application that utilises
interchangability function should not use physical names, which have dependency on
particular instrument driver. To avoid this, you need create virtual names that are mapped
to driver-specific physical names.

By clicking the Add button at the Names side, the Virtual Name dialog appears.

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 6/8

 IVI-COM Instrument Driver Programming Guide

Figure 2-10 Virtual Name Dialog

As an example, type Track_A for Name, and type N5!C1 for MapTo, then click the OK
button. Now a virtual name has been created.

By this configuration, when the application attempts to reference the "Track_A" object
through the repeated capabilities, then the instrument driver understands the mapped name
"N5!C1" shall be referenced. Thereby your application can reference the object by
"Track_A" instead of by "N5!C1", which actually existed as a physical name in the driver.

In the same manner, create more mappings as you need. You cannot use the same name
for Name more than once. Every virtual name must be unique. However, you can map
multiple different virtual names to the same physical name. It means you can create aliases
with multiple virtual names mapped to the same physical name.

You do not have to create virtual names corresponding to all the physical names for each.
For example, "N30!C4" is a valid physical name in the Kikusui4800 IVI-COM driver, but you
do not have to create virtual names that are mapped to it unless your application references
its object.

To show all the available virtual names and corresponding physical names, click the Show
Available Virtual Names button.

Figure 2-11 Show Available Virtual Names Dialog

Physical names that can be specified as the mapped targets are completely different
depending on the software module (instrument driver software) that was selected by the
Software Module combobox on the Driver Session tab. To obtain the information about
this, you need refer to the online help or the Readme document of each instrument driver.
You can also retrieve the information by using the sample codes that are introduced in the
guidebooks for each programming language.

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 7/8

 IVI-COM Instrument Driver Programming Guide

©2003 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 8/8

2-4 Saving Configuration
After completing the virtual instrument configuration, save the settings by File | Save menu.

IVI-COM Instrument Dr ver Programm ng Guide i i
 t i r

 .
Product names and company names that appear in his gu debook are t ademarks or registered
trademarks of their respective companies
©2003 Kikusui Electronics Corp. All Rights Reserved.

	Overview
	Virtual Instrument

	Kikusui IVI Config Utility
	Launching The Utility
	Adding A Logical Name
	Configuration On Tab Pages
	Logical Name Tab
	Driver Session Tab
	Hardware Asset Tab
	Virtual Name Tab

	Saving Configuration

