
 IVI-COM Instrument Driver Programming Guide

©2005 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 1/15

IVI-COM Instrument Driver
Programming Guide

 (LabWindows/CVI Edition)
 Sep 2005 Revision 2.0

1- Overview

1-1 Supporting IVI-C Drivers
LabWindows/CVI is a development environment that assumes to use the C language.
Although it is possible to use IVI-COM instrument drivers directly, it is much easier to
program utilising IVI-C or VXI Plug&Play instrument drivers if they are supported. IVI-COM
instrument drivers from Kikusui provide not only IVI-COM interfaces, but also support IVI-C
programming interfaces. The IVI-C specifications are the advanced versions of VXI Plug &
Play instrument driver specifications, therefore they are the most suitable driver types for use
with LabWindows/CVI.

Notes:

IVI-COM instrument drivers from Kikusui do support both IVI-COM and IVI-C interfaces, as long as the
driver version is 2.x.x.x or later. Mind that any versions 1.x.x.x or prior do not support IVI-C.

To use IVI-C instrument drivers, you must separately install NI IVI Compliance Package 2.x. This
software package is not automatically installed with Kikusui's IVI driver setup program. Also, not all the
LabWindows/CVI versions do install it.

This guidebook assumes that you use IVI-COM Kikusui4800 instrument driver (for KIKUSUI PIA4800
series DC Power Supply Controller). You can also use IVI-COM instrument drivers for other models in
the same manner.

This guidebook assumes that you use LabWindows/CVI 7.1.

When using an IVI instrument driver, there are two approaches – using specific interfaces
and using class interfaces. The former is to use interfaces that are specific to an instrument
driver and you can utilise the most of features of the instrument you use. The later is to
utilise instrument class interfaces that are defined in the IVI specifications allowing to utilise
interchangability features, but instrument specific features are restricted.

Notes:

The instrument class to which the instrument driver belongs is documented in Readme.txt for each of
drivers. The Readme document can be viewed from Start button Program IVI folder.

If the instrument driver does not belong to any instrument classes, you can't utilise class interfaces.
This means that you cannot develop applications that utilise interchangability features.

2- Example Using Specific Interfaces

Here we introduce an example using specific interfaces. By using specific interfaces, you can
utilise the maximum power of driver features but you have to spoil interchangability.

 IVI-COM Instrument Driver Programming Guide

©2005 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 2/15

2-1 Creating An Application Project
As you launch the LabWindows/CVI integrated environment, a new application project is
created. If the existing project is automatically read when launching, select File | New |
Project (*.prj) menu. Although this guidebook assumes that you use the IVI-C driver with
a new application project, you can also apply the same manner for existing projects.

After creating the new project, it is recommended to save it first by choosing File | Save
Untitled.PRJ As… menu. This example assumes that the project is Ex01.prj. Since there
are no C source files yet immediately after creating the project, create a new source file with
File | New | Source (*.c)… menu then store it as Ex01.C. Furthermore append the
source file to the project by choosing File | Add Ex01.c to Project menu.

2-2 Loading Instrument Driver
Select Instrument| Load menu, then select ki4800.fp located in the Program
Files/IVI/Drivers/ki4800 directory. Then the Instrument | Kikusui PIA4800 Power
Supply Controller menu will be added.

Figure 2-1 Instrument Menu

2-3 Writing Codes

Inserting Function Call
Open the C source code (Ex01.c) that was added to the project. Currently there is no code
written. Next, select Instrument | Kikusui PIA4800 Power Supply Controller menu.

 IVI-COM Instrument Driver Programming Guide

©2005 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 3/15

Figure 2-2 Select Function Panel

Select Initialize With Options then click the Select button. Then the Initialize With
Options function panel appears. Here, type &vi for Instrument Handle, and type vs for
Status. Keep the Option String default. Specify the VISA address through which your
instrument is connected for Resource Name. After that, select Code | Insert Function
Call menu to insert the function call code for ki4800_InitWithOptions() into the
source code (Ex01.c).

Figure 2-3 Initialize With Options Function Panel

Similarly, select Close at the Select Function Panel dialog to show the Close function panel.
Here, type vi for Instrument Handle and type vs for Status. After that, select Code |
Insert Function Call menu to insert the function call code for ki4800_close() into the
source code (Ex01.c).

 IVI-COM Instrument Driver Programming Guide

©2005 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 4/15

Figure 2-4 Close Function Panel

At this point of time, the C source code is like below:

vs = ki4800_InitWithOptions ("GPIB0::7::INSTR", VI_TRUE, VI_TRUE,
 "Simulate=0,RangeCheck=1,QueryInstrStatus=1,Cache=1", &vi);

vs = ki4800_close (vi);

However, this is not a valid form for executable program. Enclose the entire block with the
main() function, then add an include line that specifies to read the instrument driver's
include file. Furthermore add variable declarations for vi and vs.

Finally add function calls, which configure voltage and current settings and output ON/OFF
control, between the InitWithOptions() and close() calls. You may add source codes
directly into the source code editor.

#include <ki4800.h>

void main()
{
ViSession vi = 0;
ViStatus vs = 0;

vs = ki4800_InitWithOptions ("GPIB0::7::INSTR", VI_TRUE, VI_TRUE,
 "Simulate=0,RangeCheck=1,QueryInstrStatus=1,Cache=1", &vi);

vs = ki4800_ConfigureVoltageLevel (vi, "N5!C1", 20);
vs = ki4800_ConfigureCurrentLimit (vi, "N5!C1",
KI4800_VAL_CURRENT_REGULATE, 2.0);
vs = ki4800_ConfigureOutputEnabled (vi, "N5!C1", 1);

vs = ki4800_close (vi);
}

 IVI-COM Instrument Driver Programming Guide

©2005 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 5/15

Building Project
Select Build | Create Debuggable Executable menu to build your project. The build
process will soon complete if there is no error especially.

2-4 Program Execution
Above example opens the instrument driver session, configures voltage/current/output, then
immediately closes the session. Just executing the program, you can't see what is how
executed because the program is not interactive. Here, set the Breakpoint on the function
call code for ki4800_InitWithOptions(). A breakpoint can be set with the Run |
Toggle Breakpoint (or F9) menu.

Selecting Run | Debug Ex01_dbg.exe menu will execute the program, and the instruction
automatically stops at the ki4800_InitWithOptions() function call, where the
Breakpoint is set. Select Run | Step Over (or F10) to execute that line.

Pay attention to the vs and vi values after ki4800_InitWithOptions() is invoked.
When the driver session has been successfully opened, vi contains the session handle
(normally 0x00000001 or greater), and vs contains the error code (0x00000000 if succeeded,
or negative value if failed).

Pressing F10 furthermore, execute the ki4800_ConfigureVoltageLevel() and
ki4800_ConfigureCurrentLimit() sequentially. For each case, the error code is
stored in the vs.

If the vs value is negative, it is meant that a function call has failed generating an error. By
adding the following code fragment, you can convert the error code to the corresponding
human-readable English message.

char buf[256];
...
ki4800_error_message (VI_NULL, vs, buf);

Note:

The KIKUSUI PIA4800 series DC Power Supply Controller requires a couple of minutes to detect
connectivity conditions of the DC power supplies through the TP-BUS. It should not be performed at
every Initialize call. Therefore, it is necessary to configure the connectivity conditions of the DC power
supplies to be controlled in advance by using Scan Utility. Make sure to run the Scan Utility when the
first time to use the driver. To run the utility, choose [Start] button All Programs IVI
Kikusui4800 Scan Utility menu.

You will need to run Scan Utility once again if you have changed number of DC power supplies, node
addresses, communication interfaces (GPIB/RS232), and/or the port number or the GPIB address.

The configuration work with Scan Utility is specific to the IVI-COM Kikusui4800(ki4800) driver. No need
to do it for other instrument drivers.

3- Description

3-1 Opening Session
To open the driver session, the ki4800_InitWithOptions() function is used. Although
the prefix ki4800_, which is applied to each function is different on the instrument driver
basis, such naming convention is applied to every IVI-C instrument driver.

vs = ki4800_InitWithOptions ("GPIB0::7::INSTR", VI_TRUE, VI_TRUE,
 "Simulate=0,RangeCheck=1,QueryInstrStatus=1,Cache=1", &vi);

 IVI-COM Instrument Driver Programming Guide

©2005 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 6/15

Notes:

As a technical term of IVI-C and VXI Plug&Play instrument drivers, "<prefix>" is often used. This is a
name that identifies each of specific instrument drivers, and "ki4800" is the one in this document. For
example, a generic expression <prefix>_init(), designates the ki4800_init() function for the ki4800
instrument driver.

Every function, except for <prefix>_init() and <prefix>_InitWithOptions(), takes ViSession as the 1st
parameter and returns ViStatus.

The <prefix>_init() function is remained for the compatibility to VXI Plug&Play driver specifications.
The function is equivalent with <prefix>_InitWithOptions() with an exception that the OptionString
parameter cannot be specified.

Now let 's talk about parameters of the ki4800_InitWithOptions function. Every IVI
instrument driver has an InitWithOptions function that is defined by the IVI
specifications. This function has the following parameters.

Table 3-1 Parameters for InitWithOptions function

Parameter Type Description

ResourceName ViRsrc
(const char*)

VISA resource name string. This is decided according to
the I/O interface and/or address through which the
instrument is connected. If the instrument has the
address 3 on the GPIB board #0, for example, it can be
GPIB0::3::INSTR.

IDQuery ViBoolean

Specifying VI_TRUE performs ID query to the
instrument.

resetDevice ViBoolean Specifying VI_TRUE resets the instrument settings.

optionString ViConstString
(const char*)

Overrides the following settings instead of default:

RangeCheck
Cache
Simulate
QueryInstrStatus
RecordCoercions
Interchange Check

Furthermore you can specify driver-specific options if
the driver supports DriverSetup features.

newVi ViSession* Receives the instrument session. (The parameter is a
pointer)

ResourceName specifies a VISA address (resource name). If IdQuery is VI_TRUE, the
driver queries the instrument identities using a query command such as "*IDN?". If
resetDevice is VI_TRUE, the driver resets the instrument settings using a reset command
such as "*RST".

OptionString has two features. One is what configures IVI-defined behaviours such as
RangeCheck, Cache, Simulate, QueryInstrStatus, RecordCoercions, and
Interchange Check. Another one is what specifies DriverSetup that may be
differently defined by each of instrument drivers. Because the OptionString is a string
parameter, these settings must be written as like the following example:

QueryInstrStatus = TRUE , Cache = TRUE , DriverSetup=12345

Names and setting values for the features being set are case-insensitive. Since the setting
values are ViBoolean type, you can use any of VI_TRUE, VI_FALSE, 1, and 0. Use commas

 IVI-COM Instrument Driver Programming Guide

©2005 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 7/15

for splitting multiple items. If an item is not explicitly specified in the OptionString
parameter, the IVI-defined default value is applied for the item. The IVI-defined default
values are VI_TRUE for RangeCheck and Cache, and VI_FALSE for others.

Some instrument drivers may have special meanings for the DriverSetup parameter. It
can specify items that are not defined by the IVI specifications when invoking the
InitWithOptions() function, and its purpose and syntax are driver-specific. Therefore,
specifying the DriverSetup must be at the last part on the OptionString parameter.
Because the contents of DriverSetup are different depending on each driver, refer to
driver's Readme document or online help.

3-2 Channel Access
When supporting power supply and/or electronic load instruments, the IVI instrument driver
is generally designed assuming the instrument has multiple channels. Therefore, driver
functions operating instrument panel settings often have the 2nd parameter, which specifies
the channel.

Example：

vs = ki4800_ConfigureVoltageLevel(vi, "N5!C1", 20.0);

As above example uses the Kikusui4800 (ki4800) driver that operates the DC power supply,
we use a channel name that contains the NODE and CHANNEL. The channel name "N5!C1"
in the above example is specific to an instrument driver, therefore different naming
convention is applied on driver basis. Refer to the driver's on-line help for what channel
names can be actually used.

This example sets 20V for the DC power supply, which is connected at NODE5 and
CHANNEL1 of the PIA4800 series DC Power Supply Controller.

3-3 Closing Session

To close the instrument driver session, use the close function.

vs = ki4800_close (vi);

4- Error Handling

In the previous example, there was no error handling processed. However, setting an out-
of-range value to a function or invoking an unsupported function may generate an error from
the instrument driver. Furthermore, no matter how the application is designed and
implemented robustly, it is impossible to avoid instrument I/O communication errors.

When using IVI-C instrument drivers, every error generated in the instrument driver is
transmitted to the client program through the return value as the ViStatus type.

 IVI-COM Instrument Driver Programming Guide

©2005 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 8/15

Table 4-1 Rough classification of ViStatus

Value Range Description

vs=0 Success

vs>0 Warning

vs<0 Error

Although you can identify what error is generated with the ViStatus return, you can convert
the code to more readable message by using error_message() function. This function
exceptionally accepts the VI_NULL as the ViSession parameter. Make sure that the receive
buffer has 256 bytes or larger area.

char buf[256];
...
ki4800_error_message (VI_NULL, vs, buf);

5- Example Using Class Interfaces

Now we explain how to use class interfaces. By using class interfaces, you can swap the
instruments without recompiling/relinking your application codes. In this case, however, IVI-
C instrument drivers for both pre-swap and post-swap models must be provided, and these
drivers both must belong to the same instrument class. There is no interchangability available
between different instrument classes.

5-1 Virtual Instrument
What you have to do before creating an application that utilises interchangability features is
create a virtual instrument. To realise interchangability features, you should not write codes
that are very specific to a particular IVI-C instrument driver (e.g. invoking the ki4800_init()
function) and should not write a specific VISA address (resource name) such as
"GPIB0::3::INSTR". Writing them directly in the application spoils interchangability.

Instead, the IVI specifications define methods to realise interchangability by placing the
external IVI Configuration Store. The application indirectly selects an instrument driver
according to contents of the IVI Configuration Store, and accesses the indirectly loaded
driver through the class driver that has no dependency to specific instrument models.

The IVI Configuration Store is normally /Program Files/IVI/Data/IviConfigurationStore.XML
file and is accessed through the IVI Configuration Server DLL. This DLL is mainly used by IVI
instrument drivers and some VISA/IVI configuration tools, not by end-user applications.
When using LabWindows/CVI, the NI-MAX (NI Measurement and Automation Explorer)
software provided by National Instruments allows you to perform IVI driver configurations.

Creating Driver Session
After launching NI-MAX, refer to the IVI Drivers node on the tree. Right-click on the
Driver Session then select Create New menu to create a new Driver Session. Being asked
for its name, give the name "MySupply".

 IVI-COM Instrument Driver Programming Guide

©2005 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 9/15

Creating Hardware Asset
Subsequently select the Hardware tab to show the hardware asset management screen.
The hardware asset specifies what interface route your actual instrument is connected
through. Here you click the Create New button to create a new Hardware Asset. Being
asked for its name, give the name "MySupply" again, then click the Create button.
Furthermore specify a valid VISA address though which your instrument is connected, as
Resource Descriptor.

Setting Linkage for Software Module
Subsequently select the Software tab to show the software module management screen.
The software module specifies the instrument driver module (DLL module). Here select
ki4800 from the Software Module list.

 IVI-COM Instrument Driver Programming Guide

©2005 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 10/15

Creating Virtual Name
Subsequently select the Virtual Names tab to show the virtual name management screen.
Normally, when channel names are related such as for power supply or electronic load
drivers, valid channel names are different depending on the drivers. Therefore, these
channel names also have to be virtualized. Click the Add button to add a virtual name, then
type "Track_A" for Virtual Name. Furthermore, select an appropriate name suitable for
the NODE/CHANNEL from Physical Name, through which your actual DC power supply is
connected. The example shown below selects N5!C1, indicating it is connected through
NODE 5, CHANNEL 1.

 IVI-COM Instrument Driver Programming Guide

©2005 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 11/15

Creating Logical Name
Finally create a logical name. The logical name is equivalent to the name of virtual
instrument configured with the NI-MAX. Refer to the IVI Drivers node on the tree. Right-
click the Logical Name then select the Create New menu to create the new logical name.
Being asked for its name, give the name "MySupply". Furthermore, select "MySupply"
from the Driver Session list.

Configuration for the virtual instrument is complete. Click the Save IVI Configuration
button placed at the upper screen on the NI-MAX to save changes.

5-2 Creating An Application Project
As you launch the LabWindows/CVI integrated environment, a new application project is
created. If the existing project is automatically read when launching, select File | New |
Project (*.prj) menu. Although this guidebook assumes that you use the IVI-C driver with
a new application project, you can also apply the same manner for existing projects.

After creating the new project, it is recommended to save it first by choosing File | Save
Untitled.PRJ As… menu. This example assumes that the project is Ex02.prj. Since there
are no C source files yet immediately after creating the project, create a new source file with
File | New | Source (*.c)… menu then store it as Ex02.C. Furthermore append the
source file to the project by choosing File | Add Ex02.c to Project menu.

5-3 Loading Instrument Driver
Select Instrument| Load menu, then select IviDCPwr.fp located in the Program
Files/IVI/Drivers/ividcpwr directory. Then the Instrument | IviDCPwr Class Driver
menu will be added.

 IVI-COM Instrument Driver Programming Guide

©2005 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 12/15

Figure 5-1 Instrument Menu

5-4 Writing Codes

Inserting Function Call
Open the C source code (Ex02.c) that was added to the project. Currently there is no code
written. Next, select Instrument | IviDCPwr Class Driver menu.

Figure 5-2 Select Function Panel

Select Initialize With Options then click the Select button. Then the Initialize With
Options function panel appears. Here, type &vi for Instrument Handle, and type vs for
Status. Keep the Option String default. At Logical Name, specify "MySupply" that
was configured in the NI-MAX previously. After that, select Code | Insert Function Call
menu to insert the function call code for IviDCPwr_InitWithOptions() into the source
code (Ex02.c).

 IVI-COM Instrument Driver Programming Guide

©2005 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 13/15

Figure 5-3 Initialize With Options Function Panel

Similarly, select Close at the Select Function Panel dialog to show the Close function panel.
Here, type vi for Instrument Handle and type vs for Status. After that, select Code |
Insert Function Call menu to insert the function call code for IviDCPwr_close() into
the source code (Ex02.c).

Figure 5-4 Close Function Panel

At this point of time, the C source code is like below:

vs = IviDCPwr_InitWithOptions ("MySupply", VI_TRUE, VI_TRUE,
 " Simulate=0,RangeCheck=1,QueryInstrStatus=0,Cache=1", &vi);

vs = IviDCPwr_close (vi);

 IVI-COM Instrument Driver Programming Guide

©2005 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 14/15

However, this is not a valid form for executable program. Enclose the entire block with the
main() function, then add an include line that specifies to read the class driver's include file.
Furthermore add variable declarations for vi and vs.

Finally add function calls, which configure voltage and current settings and output ON/OFF
control, between the InitWithOptions() and close() calls. You may add source codes
directly into the source code editor.

#include <IviDCPwr.h>

void main()
{
ViSession vi = 0;
ViStatus vs = 0;

vs = IviDCPwr_InitWithOptions ("MySupply", VI_TRUE, VI_TRUE,
 " Simulate=0,RangeCheck=1,QueryInstrStatus=0,Cache=1", &vi);

vs = IviDCPwr_ConfigureVoltageLevel (vi, "Track_A", 20);
vs = IviDCPwr_ConfigureCurrentLimit (vi, "Track_A",
IVIDCPWR_VAL_CURRENT_REGULATE, 2.0);
vs = IviDCPwr_ConfigureOutputEnabled (vi, "Track_A", 1);

vs = IviDCPwr_close (vi);

}

Building Project
Select Build | Create Debuggable Executable menu to build your project. The build
process will soon complete if there is no error especially.

5-5 Program Execution
Above example opens the instrument driver session, configures voltage/current/output, then
immediately closes the session. Just executing the program, you can't see what is how
executed because the program is not interactive. Here, set the Breakpoint on the function
call code for IviDCPwr_InitWithOptions(). A breakpoint can be set with the Run |
Toggle Breakpoint (or F9) menu.

Selecting Run | Debug Ex02_dbg.exe menu will execute the program, and the instruction
automatically stops at the IviDCPwr_InitWithOptions() function call, where the
Breakpoint is set. Select Run | Step Over (or F10) to execute that line.

Pay attention to the vs and vi values after IviDCPwr_InitWithOptions() is invoked.
When the driver session has been successfully opened, vi contains the session handle
(normally 0x00000001 or greater), and vs contains the error code (0x00000000 if succeeded,
or negative value if failed).

Pressing F10 furthermore, execute the IviDCPwr_ConfigureVoltageLevel() and
IviDCPwr_ConfigureCurrentLimit() sequentially. For each case, the error code is
stored in the vs.

6- Description

6-1 Opening Session
To open the driver session, the IviDCPwr_InitWithOptions() function is used. The
prefix IviDCPwr is specific to the IviDCPwr class driver.

 IVI-COM Instrument Driver Programming Guide

©2005 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 15/15

vs = IviDCPwr_InitWithOptions ("MySupply", VI_TRUE, VI_TRUE,
 "Simulate=0,RangeCheck=1,QueryInstrStatus=1,Cache=1", &vi);

Class drivers are different with normal instrument drivers, thus you cannot pass VISA address
to the IviDCPwr_InitWithOptions() function directly. Instead, pass the logical name
"MySupply" configured in the NI-MAX. The class driver, by referencing to the logical name,
searching for the appropriate instrument driver DLL (Software Module) and VISA address
(Hardware Asset), then at last invokes the ki4800_InitWithOption() function indirectly.

Although the contents for OptionString are exactly the same as when using the specific driver,
the default values for the case the parameter was omitted are different. The default values
when using a specific driver were the ones that were defined by the IVI specifications,
however, the default values when using the a class driver are the ones that are configured at
the Driver Session in the IVI Configuration Store.

6-2 Channel Access
When supporting power supply and/or electronic load instruments, the IVI instrument driver
is generally designed assuming the instrument has multiple channels. Therefore, driver
functions operating instrument panel settings often have the 2nd parameter, which specifies
the channel.

Example：

vs = IviDCPwr_ConfigureVoltageLevel(vi, "N5!C1", 20.0);

Above example uses the class driver, however, the channel name is specified to "N5!C1",
which is specific to a particular instrument driver (ki4800 driver in this case). Although this
approach could control the instrument, using such driver-specific names makes the
interchangeability being spoiled.

In above NI-MAX configuration, we added the virtual name "Track_A" and configured as it
can be converted to the physical name "N5!C1". Therefore we can use the virtual name for
the channel name.

vs = IviDCPwr_ConfigureVoltageLevel(vi, "Track_A", 20.0);

6-3 Closing Session

To close the instrument driver session, use IviDCPwr_close function.

vs = IviDCPwr_close (vi);

IVI-COM Instrument Driver Programming Guide
Product names and company names that appear in this guidebook are trademarks or registered
trademarks of their respective companies.
©2005 Kikusui Electronics Corp. All Rights Reserved.

	Overview
	Supporting IVI-C Drivers

	Example Using Specific Interfaces
	Creating An Application Project
	Loading Instrument Driver
	Writing Codes
	Inserting Function Call
	Building Project

	Program Execution

	Description
	Opening Session
	Channel Access
	Closing Session

	Error Handling
	Example Using Class Interfaces
	Virtual Instrument
	Creating Driver Session
	Creating Hardware Asset
	Setting Linkage for Software Module
	Creating Virtual Name
	Creating Logical Name

	Creating An Application Project
	Loading Instrument Driver
	Writing Codes
	Inserting Function Call
	Building Project

	Program Execution

	Description
	Opening Session
	Channel Access
	Closing Session

