
 IVI-COM Instrument Driver Programming Guide

©2005 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 1/16

IVI-COM Instrument Driver
Programming Guide
 (LabVIEW Edition)

Sep 2005 Revision 2.0

1- Overview

1-1 Supporting IVI-C Drivers
LabVIEW has a capability to import VXI Plug&Play and/or IVI-C instrument drivers. Although
it is possible to use IVI-COM instrument drivers directly, it is much easier to program utilising
IVI-C or VXI Plug&Play instrument drivers if they are supported. IVI-COM instrument drivers
from Kikusui provide not only IVI-COM interfaces, but also support IVI-C programming
interfaces. The IVI-C specifications are the advanced versions of VXI Plug & Play instrument
driver specifications, therefore they are the most suitable driver types for use with LabVIEW.

Notes:

IVI-COM instrument drivers from Kikusui do support both IVI-COM and IVI-C interfaces, as long as the
driver version is 2.x.x.x or later. Mind that any versions 1.x.x.x or prior do not support IVI-C.

To use IVI-C instrument drivers, you must separately install NI IVI Compliance Package 2.x. This
software package is not automatically installed with Kikusui's IVI driver setup program. Also, not all the
LabVIEW versions do install it.

This guidebook assumes that you use IVI-COM Kikusui4800 instrument driver (for KIKUSUI PIA4800
series DC Power Supply Controller). You can also use IVI-COM instrument drivers for other models in
the same manner.

This guidebook assumes that you use LabVIEW 7.1.

When using an IVI instrument driver, there are two approaches – using specific interfaces
and using class interfaces. The former is to use interfaces that are specific to an instrument
driver and you can utilise the most of features of the instrument you use. The later is to
utilise instrument class interfaces that are defined in the IVI specifications allowing to utilise
interchangability features, but instrument specific features are restricted.

Notes:

The instrument class to which the instrument driver belongs is documented in Readme.txt for each of
drivers. The Readme document can be viewed from Start button Program IVI folder.

If the instrument driver does not belong to any instrument classes, you can't utilise class interfaces.
This means that you cannot develop applications that utilise interchangability features.

2- Example Using Specific Interfaces

Here we introduce an example using specific interfaces. By using specific interfaces, you can
utilise the maximum power of driver features but you have to spoil interchangability.

2-1 Importing Instrument Driver
Because IVI-C and VXI Plug&Play instrument drivers are provided as the LabWindows/CVI
compatible format (fp, c, h, DLL, etc…), they cannot be directly used from within LabVIEW

 IVI-COM Instrument Driver Programming Guide

©2005 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 2/16

environment. Therefore, it is necessary to convert the driver interface information to
LabVIEW-compatible format (vi or llb) by importing them.

To import an instrument driver, choose Tools | Instrumentation | Import CVI
Instrument Driver menu on LabVIEW. As you will be prompted to enter an fp (CVI
Function Panel) file, select ki4800.fp located in the Program Files/IVI/Drivers/ki4800
directory. Then the CVI Function Panel Converter dialog appears. Confirm the destination of
the file conversion, DLL file name, and others as need (normally default is acceptable), then
click the OK button.

Figure 2-1 CVI Function Panel Converter

After the conversion complete, ki4800.llb (and some other support files) will be generated in
the instr.lib sub directly under the LabVIEW installation place. They are the instrument
driver wrapper, which can be directly used from LabVIEW.

The ki4800 instrument driver wrapper can be referenced through the Instrument I/O
function palette on the Block Diagram window.

Note:

The llb file that was generated by the import work is just a driver wrapper, and not the real instance of
the instrument driver. Therefore, the real driver instance (DLL) is still required to install at application
runtime.

If the LabVIEW 7.1's add-on software "LabVIEW Interface Generator for LabWindows/CVI Instrument
Drivers" is installed, there are some differences for operation on the CVI Function Panel Converter
dialog.

2-2 Adding Controls and Functions
First, create a new application. Open the Front Panel window, place an error in cluster and
an error out cluster.

 IVI-COM Instrument Driver Programming Guide

©2005 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 3/16

Figure 2-2 Front Panel

Next, open the Block Diagram window, then open the function palette for the ki4800 driver
(wrapper). The function palette will be found through the context menu Instrument
I/O Instrument Drivers ki4800.

Figure 2-3 ki4800 Function Palette

Place Initialize With Options.vi and Close.vi on the Block Diagram.
Furthermore, add Configure Voltage Level.vi, Configure Current Limit.vi,
and Configure Output Enabled.vi, which are found in the Configuration Output
palette.

 IVI-COM Instrument Driver Programming Guide

©2005 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 4/16

Figure 2-4 Block Diagram

2-3 Parameter Settings
Assuming the PIA4800 series Power Supply Controller is configured as GPIB address 3, pass
the parameters -- resource name, id query, reset device to Initialize With
Options.vi.

Figure 2-5 Params for Initialize With Options

Subsequently, add parameters that set voltage, current, and output. Here, we set 20V/2A
and the output ON.

 IVI-COM Instrument Driver Programming Guide

©2005 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 5/16

Figure 2-6 Params for Configure Functions

Mind the string -- "N5!C1". This is the target channel name for the DC power supply to be
controlled. Details are described later.

Finally, wire the controls/functions between error in and error out clusters as like the
picture below. Not only connecting error ins/outs, but make sure to connect instrument
session (handle) wires also.

Figure 2-7 Open/Configure/Close

2-4 Program Execution
You can execute the previous codes for the time being. Initialize With Options.vi
resets the instrument settings since the Reset Device parameter is set to TRUE. As you
execute the program, I/O communications with the instrument immediately starts. If the
instrument is actually connected and the Initialize With Options/Close succeeds,
the error code shown on the error out cluster will be 0. If a communication problem has
occurred or the VISA library is not configured properly, an exception is generated and its
information will be shown on the error out cluster. By selecting Context Menu Explain
Error, you can see the detail information on the explain error dialogue.

Figure 2-8 Runtime Error

Note:

The KIKUSUI PIA4800 series DC Power Supply Controller requires a couple of minutes to detect
connectivity conditions of the DC power supplies through the TP-BUS. It should not be performed at

 IVI-COM Instrument Driver Programming Guide

©2005 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 6/16

every Initialize call. Therefore, it is necessary to configure the connectivity conditions of the DC power
supplies to be controlled in advance by using Scan Utility. Make sure to run the Scan Utility when the
first time to use the driver. To run the utility, choose [Start] button All Programs IVI
Kikusui4800 Scan Utility menu.

You will need to run Scan Utility once again if you have changed number of DC power supplies, node
addresses, communication interfaces (GPIB/RS232), and/or the port number or the GPIB address.

The configuration work with Scan Utility is specific to the IVI-COM Kikusui4800(ki4800) driver. No need
to do it for other instrument drivers.

3- Description

3-1 Opening Session
To open the driver session, the ki4800 Initialize With Options.vi is used.
Although the prefix ki4800, which is applied to the vi (function) is different depending for
each instrument driver, this naming convention is applied for all the IVI-C instrument drivers.

Figure 3-1 Initialize With Options.vi Help

Notes:

As a technical term of IVI-C and VXI Plug&Play instrument drivers, "<prefix>" is often used. This is a
name that identifies each of specific instrument drivers, and "ki4800" is the one in this document. For
example, a generic expression <prefix> Initialize.vi, designates the ki4800 Initialize.vi for the ki4800
instrument driver.

Every vi (function), except for <prefix> Initialize.vi and <prefix> Initialize With Options.vi, takes the
upper left input parameter as instrument handle in.

 IVI-COM Instrument Driver Programming Guide

©2005 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 7/16

Every vi (function), except for <prefix> Close.vi, takes the upper right output parameter as
instrument handle out, which should be wired to the instrument handle in parameter on the next
vi.

The <prefix> Initialize.vi is remained for the compatibility to VXI Plug&Play driver specifications. The
function is equivalent with <prefix> Initialize With Options.vi with an exception that the option string
parameter cannot be specified.

Now let 's talk about parameters of the ki4800 Initialize With Options.vi. Every
IVI instrument driver has an Initialize With Options.vi, which is defined by the IVI
specifications. This function has the following parameters.

Table 3-1 Parameters for Initialize With Options

Parameter Type Description

Resource Name String VISA resource name string. This is decided according to
the I/O interface and/or address through which the
instrument is connected. If the instrument has the
address 3 on the GPIB board #0, for example, it can be
GPIB0::3::INSTR.

Id Query Boolean Specifying VI_TRUE performs ID query to the
instrument.

Reset Device Boolean Specifying VI_TRUE resets the instrument settings.

Option String String Overrides the following settings instead of default:

RangeCheck
Cache
Simulate
QueryInstrStatus
RecordCoercions
Interchange Check

Furthermore you can specify driver-specific options if
the driver supports DriverSetup features.

ResourceName specifies a VISA address (resource name). If Id Query is VI_TRUE, the
driver queries the instrument identities using a query command such as "*IDN?". If
resetDevice is VI_TRUE, the driver resets the instrument settings using a reset command
such as "*RST".

Option String has two features. One is what configures IVI-defined behaviours such as
RangeCheck, Cache, Simulate, QueryInstrStatus, RecordCoercions, and
Interchange Check. Another one is what specifies DriverSetup that may be
differently defined by each of instrument drivers. Because the Option String is a string
parameter, these settings must be written as like the following example:

QueryInstrStatus = TRUE , Cache = TRUE , DriverSetup=12345

Names and setting values for the features being set are case-insensitive. Since the setting
values are ViBoolean type, you can use any of VI_TRUE, VI_FALSE, 1, and 0. Use commas
for splitting multiple items. If an item is not explicitly specified in the OptionString
parameter, the IVI-defined default value is applied for the item. The IVI-defined default
values are VI_TRUE for RangeCheck and Cache, and VI_FALSE for others.

Some instrument drivers may have special meanings for the DriverSetup parameter. It
can specify items that are not defined by the IVI specifications when invoking the
InitializeWithOptions function, and its purpose and syntax are driver-specific.
Therefore, specifying the DriverSetup must be at the last part on the Option String
parameter. Because the contents of DriverSetup are different depending on each driver,
refer to driver's Readme document or online help.

 IVI-COM Instrument Driver Programming Guide

©2005 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 8/16

3-2 Channel Access
When supporting power supply and/or electronic load instruments, the IVI instrument driver
is generally designed assuming the instrument has multiple channels. Therefore, driver
functions operating instrument panel settings often have the channel name parameter,
which specifies the channel.

Figure 3-2 Configure Voltage Level.vi Help

As this document uses the Kikusui4800 (ki4800) driver that operates the DC power supply,
we use a channel name that contains the NODE and CHANNEL. The channel name "N5!C1"
in the above example is specific to an instrument driver, therefore different naming
convention is applied on driver basis. Refer to the driver's on-line help for what channel
names can be actually used.

This example sets 20V for the DC power supply, which is connected at NODE5 and
CHANNEL1 of the PIA4800 series DC Power Supply Controller.

3-3 Closing Session

To close the instrument driver session, use the ki4800 Close.vi function.

Figure 3-3 Close.vi Help

 IVI-COM Instrument Driver Programming Guide

©2005 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 9/16

4- Example Using Class Interfaces

Now we explain how to use class interfaces. By using class interfaces, you can swap the
instruments without recompiling/relinking your application codes. In this case, however, IVI-
C instrument drivers for both pre-swap and post-swap models must be provided, and these
drivers both must belong to the same instrument class. There is no interchangability available
between different instrument classes.

4-1 Virtual Instrument
What you have to do before creating an application that utilises interchangability features is
create a virtual instrument. To realise interchangability features, you should not write codes
that are very specific to a particular IVI-C instrument driver (e.g. invoking the ki4800_init()
function) and should not write a specific VISA address (resource name) such as
"GPIB0::3::INSTR". Writing them directly in the application spoils interchangability.

Instead, the IVI specifications define methods to realise interchangability by placing the
external IVI Configuration Store. The application indirectly selects an instrument driver
according to contents of the IVI Configuration Store, and accesses the indirectly loaded
driver through the class driver that has no dependency to specific instrument models.

The IVI Configuration Store is normally /Program Files/IVI/Data/IviConfigurationStore.XML
file and is accessed through the IVI Configuration Server DLL. This DLL is mainly used by IVI
instrument drivers and some VISA/IVI configuration tools, not by end-user applications.
When using LabWindows/CVI, the NI-MAX (NI Measurement and Automation Explorer)
software provided by National Instruments allows you to perform IVI driver configurations.

Creating Driver Session
After launching NI-MAX, refer to the IVI Drivers node on the tree. Right-click on the
Driver Session then select Create New menu to create a new Driver Session. Being asked
for its name, give the name "MySupply".

Creating Hardware Asset
Subsequently select the Hardware tab to show the hardware asset management screen.
The hardware asset specifies what interface route your actual instrument is connected

 IVI-COM Instrument Driver Programming Guide

©2005 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 10/16

through. Here you click the Create New button to create a new Hardware Asset. Being
asked for its name, give the name "MySupply" again, then click the Create button.
Furthermore specify a valid VISA address though which your instrument is connected, as
Resource Descriptor.

Setting Linkage for Software Module
Subsequently select the Software tab to show the software module management screen.
The software module specifies the instrument driver module (DLL module). Here select
ki4800 from the Software Module list.

Creating Virtual Name
Subsequently select the Virtual Names tab to show the virtual name management screen.
Normally, when channel names are related such as for power supply or electronic load
drivers, valid channel names are different depending on the drivers. Therefore, these

 IVI-COM Instrument Driver Programming Guide

©2005 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 11/16

channel names also have to be virtualized. Click the Add button to add a virtual name, then
type "Track_A" for Virtual Name. Furthermore, select an appropriate name suitable for
the NODE/CHANNEL from Physical Name, through which your actual DC power supply is
connected. The example shown below selects N5!C1, indicating it is connected through
NODE 5, CHANNEL 1.

Creating Logical Name
Finally create a logical name. The logical name is equivalent to the name of virtual
instrument configured with the NI-MAX. Refer to the IVI Drivers node on the tree. Right-
click the Logical Name then select the Create New menu to create the new logical name.
Being asked for its name, give the name "MySupply". Furthermore, select "MySupply"
from the Driver Session list.

 IVI-COM Instrument Driver Programming Guide

©2005 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 12/16

Configuration for the virtual instrument is complete. Click the Save IVI Configuration
button placed at the upper screen on the NI-MAX to save changes.

4-2 Adding Controls and Functions
First, create a new application. Open the Front Panel window, place an error in cluster and
an error out cluster.

Figure 4-1 Front Panel

Next, open the Block Diagram window, then open the function palette for the IviDCPwr class
driver (wrapper). The function palette will be found through the context menu
Instrument I/O IVI IVI DC Power Supply.

 IVI-COM Instrument Driver Programming Guide

©2005 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 13/16

Figure 4-2 IviDCPwr Function Palette

Place Initialize With Options.vi and Close.vi on the Block Diagram.
Furthermore, add Configure Voltage Level.vi, Configure Current Limit.vi,
and Configure Output Enabled.vi, which are found in the Configuration Output
palette.

Figure 4-3 Block Diagram

Assuming the PIA4800 series Power Supply Controller is configured as GPIB address 3, pass
the parameters -- resource name, id query, reset device to Initialize With
Options.vi.

Figure 4-4 Params for Initialize With Options

Subsequently, add parameters that set voltage, current, and output. Here, we set 20V/2A
and the output ON.

 IVI-COM Instrument Driver Programming Guide

©2005 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 14/16

Figure 4-5 Params for Configure Functions

Mind the string -- "Track_A". This is the target channel name for the DC power supply to
be controlled. Details are described later.

Finally, wire the controls/functions between error in and error out clusters as like the
picture below. Not only connecting error ins/outs, but make sure to connect instrument
session (handle) wires also.

Figure 4-6 Open/Configure/Close

5- Description

5-1 Opening Session
To open the driver session, the IviDCPwr Initialize With Options.vi is used. The
prefix IviDCPwr, which is applied to the vi (function), is specific to the IviDCPwr class driver.

 IVI-COM Instrument Driver Programming Guide

©2005 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 15/16

Figure 5-1 Initialize With Options.vi Help

Class drivers are different with normal instrument drivers, thus you cannot pass VISA address
to the Initialize With Options.vi directly. Instead, pass the logical name
"MySupply" configured in the NI-MAX. The class driver, by referencing to the logical name,
searching for the appropriate instrument driver DLL (Software Module) and VISA address
(Hardware Asset), then at last invokes the ki4800 Initialize With Options.vi
indirectly.

Although the contents for OptionString are exactly the same as when using the specific driver,
the default values for the case the parameter was omitted are different. The default values
when using a specific driver were the ones that were defined by the IVI specifications,
however, the default values when using the a class driver are the ones that are configured at
the Driver Session in the IVI Configuration Store.

5-2 Channel Access
When supporting power supply and/or electronic load instruments, the IVI instrument driver
is generally designed assuming the instrument has multiple channels. Therefore, driver
functions operating instrument panel settings often have the channel name parameter,
which specifies the channel.

 IVI-COM Instrument Driver Programming Guide

©2005 KIKUSUI ELECTRONICS CORP. All Rights Reserved. Page 16/16

Figure 5-2 Configure Voltage Level.vi Help

When you pass a channel name to the vi, it is possible to specify a name that is usable only
with a particular instrument driver (ki4800 driver in this case) such as "N5!C1". However,
this approach controlling the instrument with such driver-specific names makes the
interchangeability being spoiled.

In above NI-MAX configuration, we added the virtual name "Track_A" and configured as it
can be converted to the physical name "N5!C1". Therefore we can use the virtual name for
the channel name.

5-3 Closing Session

To close the instrument driver session, use the IviDCPwr Close.vi function.

Figure 5-3 Close.vi Help

IVI-COM Instrument Driver Programming Guide
Product names and company names that appear in this guidebook are trademarks or registered
trademarks of their respective companies.
©2005 Kikusui Electronics Corp. All Rights Reserved.

	Overview
	Supporting IVI-C Drivers

	Example Using Specific Interfaces
	Importing Instrument Driver
	Adding Controls and Functions
	Parameter Settings
	Program Execution

	Description
	Opening Session
	Channel Access
	Closing Session

	Example Using Class Interfaces
	Virtual Instrument
	Creating Driver Session
	Creating Hardware Asset
	Setting Linkage for Software Module
	Creating Virtual Name
	Creating Logical Name

	Adding Controls and Functions

	Description
	Opening Session
	Channel Access
	Closing Session

